ÌâÄ¿ÄÚÈÝ
ÒÑÖªF1£¬F2ÊÇÍÖÔ²C£º
+
=1(a£¾b£¾0)µÄ½¹µã£¬¹ýF1µÄÖ±Ïßl½»CÓÚA£¬BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª8£¬CÉϵĶ¯µãµ½½¹µã¾àÀëµÄ×îСֵΪ1£¬
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãPÊÇÍÖÔ²CÉϲ»ÓëÍÖÔ²¶¥µãÖغϵÄÈÎÒâÒ»µã£¬µãMÊÇÍÖÔ²CÉϲ»ÓëÍÖÔ²¶¥µãÖغÏÇÒÒìÓÚµãPµÄÈÎÒâÒ»µã£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãÊǵãN£¬Ö±ÏßMP£¬NP·Ö±ð½»xÖáÓÚµãE£¨x1£¬0£©£¬µãF£¨x2£¬0£©£¬Ì½¾¿x1•x2ÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨Öµ£¬Çó³ö¸Ã¶¨Öµ£¬Èô²»Îª¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®
x2 |
a2 |
y2 |
b2 |
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôµãPÊÇÍÖÔ²CÉϲ»ÓëÍÖÔ²¶¥µãÖغϵÄÈÎÒâÒ»µã£¬µãMÊÇÍÖÔ²CÉϲ»ÓëÍÖÔ²¶¥µãÖغÏÇÒÒìÓÚµãPµÄÈÎÒâÒ»µã£¬µãM¹ØÓÚxÖáµÄ¶Ô³ÆµãÊǵãN£¬Ö±ÏßMP£¬NP·Ö±ð½»xÖáÓÚµãE£¨x1£¬0£©£¬µãF£¨x2£¬0£©£¬Ì½¾¿x1•x2ÊÇ·ñΪ¶¨Öµ£¬ÈôΪ¶¨Öµ£¬Çó³ö¸Ã¶¨Öµ£¬Èô²»Îª¶¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÓÚ¡÷ABF2µÄÖܳ¤Îª8£¬CÉϵĶ¯µãµ½½¹µã¾àÀëµÄ×îСֵΪ1£¬¿ÉµÃ
£¬½âµÃ¼´¿É£»
£¨2£©ÉèP£¨s£¬t£©£¬M£¨m£¬n£©£¬N£¨m£¬-n£©£®¿ÉµÃ
+
=1£¬
+
=1£¬±äÐÎΪs2=
£¬m2=
£®Ö±ÏßMPµÄ·½³ÌΪy-n=
(x-m)£¬Áîy=0£¬½âµÃx1=
£¬Í¬ÀíµÃµ½x2=
£®¼´¿ÉÖ¤Ã÷x1x2Ϊ¶¨Öµ£®
|
£¨2£©ÉèP£¨s£¬t£©£¬M£¨m£¬n£©£¬N£¨m£¬-n£©£®¿ÉµÃ
s2 |
4 |
t2 |
3 |
m2 |
4 |
n2 |
3 |
12-4t2 |
3 |
12-4n2 |
3 |
t-n |
s-m |
mt-sn |
t-n |
sn+mt |
n+t |
½â´ð£º½â£º£¨1£©¡ß¡÷ABF2µÄÖܳ¤Îª8£¬CÉϵĶ¯µãµ½½¹µã¾àÀëµÄ×îСֵΪ1£¬
¡à
£¬½âµÃ
£¬
¡àÍÖÔ²CµÄ·½³ÌΪ
+
=1£®
£¨2£©ÉèP£¨s£¬t£©£¬M£¨m£¬n£©£¬N£¨m£¬-n£©£®
Ôò
+
=1£¬
+
=1£¬
¡às2=
£¬m2=
£®
Ö±ÏßMPµÄ·½³ÌΪy-n=
(x-m)£¬Áîy=0£¬½âµÃx1=
£¬
ͬÀíµÃµ½x2=
£®
¡àx1x2=
=
=
=4£®
¹ÊΪ¶¨Öµ£®
¡à
|
|
¡àÍÖÔ²CµÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©ÉèP£¨s£¬t£©£¬M£¨m£¬n£©£¬N£¨m£¬-n£©£®
Ôò
s2 |
4 |
t2 |
3 |
m2 |
4 |
n2 |
3 |
¡às2=
12-4t2 |
3 |
12-4n2 |
3 |
Ö±ÏßMPµÄ·½³ÌΪy-n=
t-n |
s-m |
mt-sn |
t-n |
ͬÀíµÃµ½x2=
sn+mt |
n+t |
¡àx1x2=
m2t2-s2n2 |
t2-n2 |
(4-
| ||||
t2-n2 |
4(t2-n2) |
t2-n2 |
¹ÊΪ¶¨Öµ£®
µãÆÀ£º±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢µãÔÚÍÖÔ²ÉÏÂú×ãÍÖÔ²µÄ·½³ÌµÈ»ù´¡ÖªÊ¶Óë»ù±¾¼¼ÄÜ·½·¨£¬¿¼²éÁ˼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿