题目内容
【题目】在中,,分别为,的中点,,如图1.以为折痕将折起,使点到达点的位置,如图2.
如图1 如图2
(1)证明:平面平面;
(2)若平面平面,求直线与平面所成角的正弦值。
【答案】(1)见解析;(2)直线与平面所成角的正弦值为.
【解析】
(1)在题图1中,可证 ,在题图2中,平面.进而得到平面.从而证得平面平面;
(2)可证得平面. .则以为坐标原点,分别以,,的方向为轴、轴、轴的正方向建立如图所示的空间直角坐标系,利用空间向量可求直线与平面所成角的正弦值.
(1)证明:在题图1中,因为,且为的中点.由平面几何知识,得.
又因为为的中点,所以
在题图2中,,,且,
所以平面,
所以平面.
又因为平面,
所以平面平面.
(2)解:因为平面平面,平面平面,平面,.
所以平面.
又因为平面,
所以.
以为坐标原点,分别以,,的方向为轴、轴、轴的正方向建立如图所示的空间直角坐标系
在题图1中,设,则,,,.
则,,,.
所以,,.
设为平面的法向量,
则,即
令,则.所以.
设与平面所成的角为,
则.
所以直线与平面所成角的正弦值为.
【题目】已知某地区中小学生人数和近视情况如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生作为样本进行调查.
(1)求样本容量和抽取的高中生近视人数分别是多少?
(2)在抽取的名高中生中,平均每天学习时间超过9小时的人数为,其中有12名学生近视,请完成高中生平均每天学习时间与近视的列联表:
平均学习时间不超过9小时 | 平均学习时间超过9小时 | 总计 | |
不近视 | |||
近视 | |||
总计 |
(3)根据(2)中的列联表,判断是否有的把握认为高中生平均每天学习时间与近视有关?
附:,其中.
【题目】自2018年10月1日起,中华人民共和国个人所得税新规定,公民月工资、薪金所得不超过5000元的部分不必纳税,超过5000元的部分为全月应纳税所得额,此项税款按下表分段累计计算:
全月应纳税所得额 | 税率 |
不超过1500元的部分 | 3 |
超过1500元不超过4500元的部分 | 10 |
超过4500元不超过9000元的部分 | 20 |
超过9000元不超过35000元 | 25 |
如果小李10月份全月的工资、薪金为7000元,那么他应该纳税多少元?
如果小张10月份交纳税金425元,那么他10月份的工资、薪金是多少元?
写出工资、薪金收入元月与应缴纳税金元的函数关系式.