题目内容
8.已知tanα=2,则sinαcosα=( )A. | -$\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
分析 由条件利用同角三角函数的基本关系求得sinαcosα的值.
解答 解:∵tanα=2,则sinαcosα=$\frac{sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{tanα}{{tan}^{2}α+1}$=$\frac{2}{5}$,
故选:B.
点评 本题主要考查同角三角函数的基本关系,属于基础题.
练习册系列答案
相关题目
18.已知角α的顶点与原点O重合,始边与x轴的正半轴重合,若它的终边经过点P(2,3),则$tan({2α+\frac{π}{4}})$=( )
A. | $-\frac{7}{17}$ | B. | $\frac{17}{7}$ | C. | $-\frac{12}{5}$ | D. | $\frac{5}{12}$ |
19.定义域为R的函数f(x)满足f(x+2)=4f(x).x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x}&{x∈[0,1)}\\{lo{g}_{\sqrt{2}}(x+1)}&{x∈[1,2)}\end{array}\right.$,若x∈[-2,0)对任意的t∈[1,2)都有 f(x)≥$\frac{t}{16}-\frac{a}{8{t}^{2}}$成立,则实数a的取值范围是( )
A. | (-∞,2] | B. | [12,+∞) | C. | (-∞,6] | D. | [6,+∞) |
17.若满足条件C=30°,AB=2,BC=a的△ABC有两个,那么a的取值范围是( )
A. | (1,2) | B. | (1,2$\sqrt{3}$) | C. | (2,4) | D. | (2,4$\sqrt{3}$) |
18.若实数x,y满足条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥2}\\{x≤1}\end{array}\right.$,则2x+y的最大值为( )
A. | 5 | B. | 4 | C. | 3 | D. | $\frac{5}{2}$ |