ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÖ±ÏßlµÄ·½³ÌΪx=-2£¬ÇÒÖ±ÏßlÓëxÖá½»ÓÚµãM£¬Ô²O£ºx2+y2=1ÓëxÖá½»ÓÚA£¬BÁ½µã£¨Èçͼ£©£®£¨¢ñ£©¹ýMµãµÄÖ±Ïßl1½»Ô²ÓÚP¡¢QÁ½µã£¬ÇÒÔ²»¡PQǡΪԲÖܵÄ$\frac{1}{4}$£¬ÇóÖ±Ïßl1µÄ·½³Ì£»
£¨¢ò£©ÇóÖÐÐÄÔÚԵ㣬½¹µãÔÚxÖᣬÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ÇÒÓëÔ²OÇ¡ÓÐÁ½¸ö¹«¹²µãµÄÍÖÔ²·½³Ì£»
£¨¢ó£©¹ýMµãµÄÔ²µÄÇÐÏßl2½»£¨¢ò£©ÖеÄÒ»¸öÍÖÔ²ÓÚC¡¢DÁ½µã£¬ÆäÖÐC¡¢DÁ½µãÔÚxÖáÉÏ·½£¬ÇóÏ߶ÎCDµÄ³¤£®
·ÖÎö £¨¢ñ£©¿ÉÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬Óɵ㵽ֱÏߵľàÀ빫ʽ¿ÉµÃkµÄ·½³Ì£¬½â·½³Ì¿ÉµÃ£»
£¨¢ò£©ÉèÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Ò×µÃa=1»òb=1£¬·Ö±ð¿ÉµÃbºÍaÖµ£¬¿ÉµÃ·½³Ì£»
£¨¢ó£©¿ÉÉèÖ±Ïßl2µÄ·½³ÌΪy=$\frac{\sqrt{3}}{3}$£¨x+2£©ºÍÍÖÔ²ÁªÁ¢¿ÉµÃ5x2+8x+2=0£¬ÓÉÏÒ³¤¹«Ê½¿ÉµÃ£®
½â´ð ½â£º£¨¢ñ£©¡ßÔ²¹ÂPQǡΪԲÖܵÄ$\frac{1}{4}$£¬¡à¡ÏPOQ=$\frac{¦Ð}{2}$£¬
¡àµãOµ½Ö±Ïßl1µÄ¾àÀëΪ$\frac{\sqrt{2}}{2}$£¬
ÉèÖ±Ïßl1µÄ·½³ÌΪy=k£¨x+2£©£¬
¡à$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=$\frac{\sqrt{2}}{2}$£¬½âµÃk=¡À$\frac{\sqrt{7}}{7}$£¬
¡àÖ±Ïßl1µÄ·½³ÌΪy=¡À$\frac{\sqrt{7}}{7}$£¨x+2£©£»
£¨¢ò£©ÉèÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
¡ßÍÖÔ²ÓëÔ²OÇ¡ÓÐÁ½¸ö¹«¹²µã£¬¡àa=1»òb=1£¬
µ±a=1ʱ£¬c=$\frac{1}{2}$£¬b2=a2-c2=$\frac{3}{4}$£¬ËùÇóÍÖÔ²·½³ÌΪx2+$\frac{4{y}^{2}}{3}$=1£»
ͬÀíµ±b=1ʱ£¬¿ÉµÃa2=2£¬ËùÇóÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£»
£¨¢ó£©ÉèÇеãΪN£¬ÓÉÌâÒâ¿ÉµÃÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£¬
ÔÚRT¡÷MONÖУ¬MO=2£¬ON=1£¬Ôò¡ÏNMO=30¡ã£¬
¡àÖ±Ïßl2µÄ·½³ÌΪy=$\frac{\sqrt{3}}{3}$£¨x+2£©£¬
´úÈëÍÖÔ²$\frac{{x}^{2}}{2}$+y2=1ÕûÀí¿ÉµÃ5x2+8x+2=0£¬
ÉèC£¨x1£¬y1£©£¬D£¨x2£¬y2£©£¬
ÓÉΤ´ï¶¨Àí¿ÉµÃx1+x2=-$\frac{8}{5}$£¬x1x2=$\frac{2}{5}$£¬
ÓÉÏÒ³¤¹«Ê½¿ÉµÃÏ߶ÎCDµÄ³¤|CD|=$\sqrt{£¨1+\frac{1}{3}£©[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\frac{4\sqrt{2}}{5}$
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵ£¬Éæ¼°ÏÒ³¤¹«Ê½ºÍ¾àÀ빫ʽ£¬ÊôÖеµÌ⣮
A£® | 40¡ã | B£® | 50¡ã | C£® | 60¡ã | D£® | 70¡ã |
A£® | £¨-8£¬-8£© | B£® | £¨6£¬6£© | C£® | £¨8£¬8£© | D£® | £¨6£¬6£©»ò£¨-8£¬-8£© |