ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬OΪ×ø±êԵ㣬µãAµÄ×ø±êΪ£¨0£¬4£©£¬µãBµÄ×ø±êΪ£¨4£¬0£©£¬µãCµÄ×ø±êΪ£¨-4£¬0£©£¬µãPÔÚÉäÏßABÉÏÔ˶¯£¬Á¬½áCPÓëyÖá½»ÓÚµãD£¬Á¬½áBD£®¹ýP£¬D£¬BÈýµã×÷¡ÑQÓëyÖáµÄÁíÒ»¸ö½»µãΪE£¬ÑÓ³¤DQ½»¡ÑQÓÚµãF£¬Á¬½áEF£¬BF£®
£¨1£©ÇóÖ±ÏßABµÄº¯Êý½âÎöʽ£»
£¨2£©µ±µãPÔÚÏ߶ÎAB£¨²»°üÀ¨A£¬BÁ½µã£©ÉÏʱ£®
¢ÙÇóÖ¤£º¡ÏBDE=¡ÏADP£»
¢ÚÉèDE=x£¬DF=y£®ÇëÇó³öy¹ØÓÚxµÄº¯Êý½âÎöʽ£»
£¨3£©ÇëÄã̽¾¿£ºµãPÔÚÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚÒÔB£¬D£¬FΪ¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬Âú×ãÁ½ÌõÖ±½Ç±ßÖ®±ÈΪ2£º1£¿Èç¹û´æÔÚ£¬Çó³ö´ËʱµãPµÄ×ø±ê£ºÈç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÇóÖ±ÏßABµÄº¯Êý½âÎöʽ£»
£¨2£©µ±µãPÔÚÏ߶ÎAB£¨²»°üÀ¨A£¬BÁ½µã£©ÉÏʱ£®
¢ÙÇóÖ¤£º¡ÏBDE=¡ÏADP£»
¢ÚÉèDE=x£¬DF=y£®ÇëÇó³öy¹ØÓÚxµÄº¯Êý½âÎöʽ£»
£¨3£©ÇëÄã̽¾¿£ºµãPÔÚÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚÒÔB£¬D£¬FΪ¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬Âú×ãÁ½ÌõÖ±½Ç±ßÖ®±ÈΪ2£º1£¿Èç¹û´æÔÚ£¬Çó³ö´ËʱµãPµÄ×ø±ê£ºÈç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÏàËÆÈý½ÇÐεÄÐÔÖÊ,º¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨
רÌ⣺¼ÆËãÌâ,×ÛºÏÌâ
·ÖÎö£º£¨1£©ÉèÖ±ÏßABµÄº¯Êý½âÎöʽΪy=kx+4£¬°Ñ£¨4£¬0£©´úÈë¼´¿É£»
£¨2£©¢ÙÏÈÖ¤³ö¡÷BDO¡Õ¡÷COD£¬µÃ³ö¡ÏBDO=¡ÏCDO£¬ÔÙ¸ù¾Ý¡ÏCDO=¡ÏADP£¬¼´¿ÉµÃ³ö¡ÏBDE=¡ÏADP£¬
¢ÚÏÈÁ¬½áPE£¬¸ù¾Ý¡ÏADP=¡ÏDEP+¡ÏDPE£¬¡ÏBDE=¡ÏABD+¡ÏOAB£¬¡ÏADP=¡ÏBDE£¬¡ÏDEP=¡ÏABD£¬µÃ³ö¡ÏDPE=¡ÏOAB£¬ÔÙÖ¤³ö¡ÏDFE=¡ÏDPE=45¡ã£¬×îºó¸ù¾Ý¡ÏDEF=90¡ã£¬µÃ³ö¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬´Ó¶øÇó³öDF=
DE£¬¼´y=
x£»
£¨3£©µ±
=2ʱ£¬¹ýµãF×÷FH¡ÍOBÓÚµãH£¬Ôò¡ÏDBO=¡ÏBFH£¬ÔÙÖ¤³ö¡÷BOD¡×¡÷FHB£¬
=
=
=2£¬µÃ³öFH=2£¬OD=2BH£¬ÔÙ¸ù¾Ý¡ÏFHO=¡ÏEOH=¡ÏOEF=90¡ã£¬µÃ³öËıßÐÎOEFHÊǾØÐΣ¬OE=FH=2£¬EF=OH=4-
OD£¬¸ù¾ÝDE=EF£¬Çó³öODµÄ³¤£¬´Ó¶øµÃ³öÖ±ÏßCDµÄ½âÎöʽΪy=
x+
£¬ÔÙÁª½âÖ±Ïß·½³Ì¼´¿ÉÇó³öµãPµÄ×ø±ê£»
µ±
=
ʱ£¬Á¬½áEB£¬ÏÈÖ¤³ö¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬¹ýµãF×÷FG¡ÍOBÓÚµãG£¬Í¬Àí¿ÉµÃ¡÷BOD¡×¡÷FGB£¬
=
=
=
£¬µÃ³öFG=8£¬OD=
BG£¬ÔÙÖ¤³öËıßÐÎOEFGÊǾØÐΣ¬Çó³öODµÄÖµ£¬ÔÙÇó³öÖ±ÏßCDµÄ½âÎöʽ£¬×îºóÁª½âÖ±Ïß·½³Ì¼´¿ÉÇó³öµãPµÄ×ø±ê£®
£¨2£©¢ÙÏÈÖ¤³ö¡÷BDO¡Õ¡÷COD£¬µÃ³ö¡ÏBDO=¡ÏCDO£¬ÔÙ¸ù¾Ý¡ÏCDO=¡ÏADP£¬¼´¿ÉµÃ³ö¡ÏBDE=¡ÏADP£¬
¢ÚÏÈÁ¬½áPE£¬¸ù¾Ý¡ÏADP=¡ÏDEP+¡ÏDPE£¬¡ÏBDE=¡ÏABD+¡ÏOAB£¬¡ÏADP=¡ÏBDE£¬¡ÏDEP=¡ÏABD£¬µÃ³ö¡ÏDPE=¡ÏOAB£¬ÔÙÖ¤³ö¡ÏDFE=¡ÏDPE=45¡ã£¬×îºó¸ù¾Ý¡ÏDEF=90¡ã£¬µÃ³ö¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬´Ó¶øÇó³öDF=
2 |
2 |
£¨3£©µ±
BD |
BF |
OB |
HF |
OD |
HB |
BD |
FB |
1 |
2 |
1 |
3 |
4 |
3 |
µ±
BD |
BF |
1 |
2 |
OB |
HF |
OD |
HB |
BD |
FB |
1 |
2 |
1 |
2 |
½â´ð£º½â£º£¨1£©ÉèÖ±ÏßABµÄº¯Êý½âÎöʽΪy=kx+4£¬
´úÈ루4£¬0£©µÃ£º4k+4=0£¬½âµÃk=-1£¬
ÔòÖ±ÏßABµÄº¯Êý½âÎöʽΪy=-x+4£»
£¨2£©¢ÙÓÉÒÑÖªµÃ£ºOB=OC£¬¡ÏBOD=¡ÏCOD=90¡ã£¬
ÓÖ¡ßOD=OD£¬¡à¡÷BDO¡Õ¡÷CDO£¬¿ÉµÃ¡ÏBDO=¡ÏCDO£¬
¡ß¡ÏCDO=¡ÏADP£¬¡à¡ÏBDE=¡ÏADP£¬
¢ÚÁ¬½áPE£¬
¡ß¡ÏADPÊÇ¡÷DPEµÄÒ»¸öÍâ½Ç£¬¡à¡ÏADP=¡ÏDEP+¡ÏDPE£¬
¡ß¡ÏBDEÊÇ¡÷ABDµÄÒ»¸öÍâ½Ç£¬¡à¡ÏBDE=¡ÏABD+¡ÏOAB£¬
¡ß¡ÏADP=¡ÏBDE£¬¡ÏDEP=¡ÏABD£¬¡à¡ÏDPE=¡ÏOAB£¬
¡ßOA=OB=4£¬¡ÏAOB=90¡ã£¬¡à¡ÏOAB=45¡ã£¬¿ÉµÃ¡ÏDPE=45¡ã£¬
¡à¡ÏDFE=¡ÏDPE=45¡ã£¬
¡ßDFÊÇ¡ÑQµÄÖ±¾¶£¬¡à¡ÏDEF=90¡ã£¬¿ÉµÃ¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àDF=
DE£¬¼´y=
x£»
£¨3£©µ±BD£ºBF=2£º1ʱ£¬¹ýµãF×÷FH¡ÍOBÓÚµãH£¬
¡ß¡ÏDBO+¡ÏOBF=90¡ã£¬¡ÏOBF+¡ÏBFH=90¡ã£¬¡à¡ÏDBO=¡ÏBFH£¬
ÓÖ¡ß¡ÏDOB=¡ÏBHF=90¡ã£¬¡à¡÷BOD¡×¡÷FHB£¬¿ÉµÃ
=
=
=2£¬µÃFH=2£¬OD=2BH£¬
¡ß¡ÏFHO=¡ÏEOH=¡ÏOEF=90¡ã£¬¡àËıßÐÎOEFHÊǾØÐΣ¬¿ÉµÃOE=FH=2£¬EF=OH=4-
OD£¬
¡ßDE=EF£¬¡à2+OD=4-
OD£¬½âµÃOD=
£¬¡àµãDµÄ×ø±êΪ£¨0£¬
£©£¬
¡àÖ±ÏßCDµÄ½âÎöʽΪy=
x+
£¬
ÓÉ
µÃ£º
£¬
ÔòµãPµÄ×ø±êΪ£¨2£¬2£©£»
µ±
=
ʱ£¬Á¬½áEB£¬Í¬£¨2£©¢Ù¿ÉµÃ£º¡ÏADB=¡ÏEDP£¬
¶ø¡ÏADB=¡ÏDEB+¡ÏDBE£¬¡ÏEDP=¡ÏDAP+¡ÏDPA£¬
¡ß¡ÏDEB=¡ÏDPA£¬¡à¡ÏDBE=¡ÏDAP=45¡ã£¬
¡à¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¹ýµãF×÷FG¡ÍOBÓÚµãG£¬
ͬÀí¿ÉµÃ¡÷BOD¡×¡÷FGB£¬¡à
=
=
=
£¬FG=8£¬OD=
BG£¬
¡ß¡ÏFGO=¡ÏGOE=¡ÏOEF=90¡ã£¬¡àËıßÐÎOEFGÊǾØÐΣ¬µÃOE=FG=8£¬
¡àEF=OG=4+2OD£¬
¡ßDE=EF£¬¡à8-OD=4+2OD£¬OD=
£¬½âµÃµãDµÄ×ø±êΪ£¨0£¬-
£©£¬
Ö±ÏßCDµÄ½âÎöʽΪ£ºy=-
x-
£¬
ÓÉ
µÃ£º
£¬¡àµãPµÄ×ø±êΪ£¨8£¬-4£©£¬
×ÛÉÏËùÊö£¬µãPµÄ×ø±êΪ£¨2£¬2£©»ò£¨8£¬-4£©£®
´úÈ루4£¬0£©µÃ£º4k+4=0£¬½âµÃk=-1£¬
ÔòÖ±ÏßABµÄº¯Êý½âÎöʽΪy=-x+4£»
£¨2£©¢ÙÓÉÒÑÖªµÃ£ºOB=OC£¬¡ÏBOD=¡ÏCOD=90¡ã£¬
ÓÖ¡ßOD=OD£¬¡à¡÷BDO¡Õ¡÷CDO£¬¿ÉµÃ¡ÏBDO=¡ÏCDO£¬
¡ß¡ÏCDO=¡ÏADP£¬¡à¡ÏBDE=¡ÏADP£¬
¢ÚÁ¬½áPE£¬
¡ß¡ÏADPÊÇ¡÷DPEµÄÒ»¸öÍâ½Ç£¬¡à¡ÏADP=¡ÏDEP+¡ÏDPE£¬
¡ß¡ÏBDEÊÇ¡÷ABDµÄÒ»¸öÍâ½Ç£¬¡à¡ÏBDE=¡ÏABD+¡ÏOAB£¬
¡ß¡ÏADP=¡ÏBDE£¬¡ÏDEP=¡ÏABD£¬¡à¡ÏDPE=¡ÏOAB£¬
¡ßOA=OB=4£¬¡ÏAOB=90¡ã£¬¡à¡ÏOAB=45¡ã£¬¿ÉµÃ¡ÏDPE=45¡ã£¬
¡à¡ÏDFE=¡ÏDPE=45¡ã£¬
¡ßDFÊÇ¡ÑQµÄÖ±¾¶£¬¡à¡ÏDEF=90¡ã£¬¿ÉµÃ¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àDF=
2 |
2 |
£¨3£©µ±BD£ºBF=2£º1ʱ£¬¹ýµãF×÷FH¡ÍOBÓÚµãH£¬
¡ß¡ÏDBO+¡ÏOBF=90¡ã£¬¡ÏOBF+¡ÏBFH=90¡ã£¬¡à¡ÏDBO=¡ÏBFH£¬
ÓÖ¡ß¡ÏDOB=¡ÏBHF=90¡ã£¬¡à¡÷BOD¡×¡÷FHB£¬¿ÉµÃ
OB |
HF |
OD |
HB |
BD |
FB |
¡ß¡ÏFHO=¡ÏEOH=¡ÏOEF=90¡ã£¬¡àËıßÐÎOEFHÊǾØÐΣ¬¿ÉµÃOE=FH=2£¬EF=OH=4-
1 |
2 |
¡ßDE=EF£¬¡à2+OD=4-
1 |
2 |
4 |
3 |
4 |
3 |
¡àÖ±ÏßCDµÄ½âÎöʽΪy=
1 |
3 |
4 |
3 |
ÓÉ
|
|
ÔòµãPµÄ×ø±êΪ£¨2£¬2£©£»
µ±
BD |
BF |
1 |
2 |
¶ø¡ÏADB=¡ÏDEB+¡ÏDBE£¬¡ÏEDP=¡ÏDAP+¡ÏDPA£¬
¡ß¡ÏDEB=¡ÏDPA£¬¡à¡ÏDBE=¡ÏDAP=45¡ã£¬
¡à¡÷DEFÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
¹ýµãF×÷FG¡ÍOBÓÚµãG£¬
ͬÀí¿ÉµÃ¡÷BOD¡×¡÷FGB£¬¡à
OB |
GF |
OD |
GB |
BD |
FB |
1 |
2 |
1 |
2 |
¡ß¡ÏFGO=¡ÏGOE=¡ÏOEF=90¡ã£¬¡àËıßÐÎOEFGÊǾØÐΣ¬µÃOE=FG=8£¬
¡àEF=OG=4+2OD£¬
¡ßDE=EF£¬¡à8-OD=4+2OD£¬OD=
4 |
3 |
4 |
3 |
Ö±ÏßCDµÄ½âÎöʽΪ£ºy=-
1 |
3 |
4 |
3 |
ÓÉ
|
|
×ÛÉÏËùÊö£¬µãPµÄ×ø±êΪ£¨2£¬2£©»ò£¨8£¬-4£©£®
µãÆÀ£º´ËÌ⿼²éÁËÒ»´Îº¯ÊýµÄ×ۺϣ¬Óõ½µÄ֪ʶµãÊÇÒ»´Îº¯Êý¡¢¾ØÐεÄÐÔÖÊ¡¢Ô²µÄÐÔÖÊ£¬¹Ø¼üÊÇ×ÛºÏÔËÓÃÓйØ֪ʶ×÷³ö¸¨ÖúÏߣ¬Áгö·½³Ì×飮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
¶þÏîʽ£¨2+x2£©£¨1-x£©6µÄÕ¹¿ªÊ½ÖÐx2µÄϵÊýΪ£¨¡¡¡¡£©
A¡¢28 | B¡¢31 | C¡¢35 | D¡¢38 |
Èçͼ£¬ËıßÐÎABCDÄÚ½ÓÓÚÔ²O£¬¡ÏBOD=110¡ã£¬¡ÏBCDµÈÓÚ£¨¡¡¡¡£©
A¡¢100¡ã | B¡¢110¡ã | C¡¢125¡ã | D¡¢135¡ã |