题目内容
3.数列{an},{bn}满足an+1=$\frac{{{a}_{n}}^{2}}{{a}_{n}+{b}_{n}}$,bn+1=$\frac{{{b}_{n}}^{2}}{{a}_{n}+{b}_{n}}$,a1=3,b1=1.(1)令Cn=an-bn,求数列{Cn}的通项公式;
(2)记数列{bn}的前n项和为Sn,求证:Sn<$\frac{3}{2}$.
分析 (1)通过an+1=$\frac{{{a}_{n}}^{2}}{{a}_{n}+{b}_{n}}$与bn+1=$\frac{{{b}_{n}}^{2}}{{a}_{n}+{b}_{n}}$作差可知an+1-bn+1=an-bn,进而可得结论;
(2)通过(1)可知an-bn=2,进而bn+1=$\frac{{{b}_{n}}^{2}}{2+{2b}_{n}}$,通过计算可知bn+1<$\frac{1}{3}$•bn,计算即得结论.
解答 (1)解:∵an+1=$\frac{{{a}_{n}}^{2}}{{a}_{n}+{b}_{n}}$,bn+1=$\frac{{{b}_{n}}^{2}}{{a}_{n}+{b}_{n}}$,
∴an+1-bn+1=$\frac{{{a}_{n}}^{2}}{{a}_{n}+{b}_{n}}$-$\frac{{{b}_{n}}^{2}}{{a}_{n}+{b}_{n}}$
=$\frac{({a}_{n}-{b}_{n})({a}_{n}+{b}_{n})}{{a}_{n}+{b}_{n}}$
=an-bn,
即Cn+1=Cn,
又∵C1=a1-b1=3-1=2,
∴Cn=2;
(2)证明:由(1)可知an-bn=2,
∵bn+1=$\frac{{{b}_{n}}^{2}}{{a}_{n}+{b}_{n}}$=$\frac{{{b}_{n}}^{2}}{2+{2b}_{n}}$,
∴b2=$\frac{1}{4}$,b3=$\frac{1}{40}$,b4=$\frac{1}{3280}$,
∴bn+1<$\frac{1}{3}$•bn,
∴Sn<1+$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$=$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$=$\frac{3}{2}$-$\frac{1}{2}$•$\frac{1}{{3}^{n-1}}$<$\frac{3}{2}$.
点评 本题考查数列的通项及求和,注意解题方法的积累,属于中档题.
A. | [-$\frac{3\sqrt{2}}{4}$,$\frac{3\sqrt{2}}{4}$] | B. | [-$\frac{\sqrt{6}}{4}$,$\frac{\sqrt{6}}{4}$] | C. | [-$\sqrt{2}$,$\sqrt{2}$] | D. | [-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$] |