题目内容
【题目】在中,内角,,的对边分别是,,,且满足:.
(Ⅰ)求角的大小;
(Ⅱ)若,求的最大值.
【答案】(Ⅰ);(Ⅱ)2.
【解析】
(Ⅰ)运用正弦定理实现角边转化,然后利用余弦定理,求出角的大小;
(Ⅱ)方法1:由(II)及,利用余弦定理,可得,再利用基本不等式,可求出的最大值;
方法2:利用正弦定理实现边角转化,利用两角和的正弦公式和辅助角公式,利用正弦型函数的单调性,可求出的最大值;
(I)由正弦定理得:,
因为,所以,
所以由余弦定理得:,
又在中,,
所以.
(II)方法1:由(I)及,得
,即,
因为,(当且仅当时等号成立)
所以.
则(当且仅当时等号成立)
故的最大值为2.
方法2:由正弦定理得,,
则,
因为,所以,
故的最大值为2(当时).
练习册系列答案
相关题目
【题目】已知某帆船中心比赛场馆区的海面上每天海浪高度y(米)可看作时间(单位:小时)的函数,记作,经过长期观测,的曲线可近似地看成是函数,下列是某日各时的浪高数据.
t/小时 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 1 | 1 | 1 | 1 |
(1)根据以上数据,求出的解析式;
(2)为保证安全比赛时的浪高不能高于米,则在一天中的哪些时间可以进行比赛.