题目内容

设M={ 平面内的点(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},给出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,则点(2,  
3
)
的像f(x)的最小正周期是(  )
A.πB.
π
2
C.2πD.
π
3
设M={ 平面内的点(m,n)},N={f(x)|f(x)=mcos2x+nsin2x},给出M到N的映射f:(m,n)→f(x)=mcos2x+nsin2x,
(2,  
3
)
的像f(x)=2cos2x+
3
sin2x=cos2x+
3
sin2x+1=2sin(2x+
π
6
)+1
所以函数的最小正周期是:
2

故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网