题目内容
【题目】已知二次函数.
(1)若方程两个根之和为4,两根之积为3,且过点(2,-1).求的解集;
(2)若关于的不等式的解集为.
(ⅰ)求解关于的不等式
(ⅱ)设函数,求函数的最大值
【答案】(1);(2)(ⅰ);(ⅱ).
【解析】
(1)由韦达定理及函数过点(2,-1),列方程组求解即可;
(2)(ⅰ)由不等式的解集与方程的根可得,则可化为,再解此不等式即可;
(ⅱ)由(ⅰ)得,再利用均值不等式求函数的最大值,一定要注意取等的条件,得解.
(1)由题意可得,解得,,
解不等式,即,即,解得,
因此,不等式的解集为;
(2)(ⅰ)由题意可知,所以可化为,
即,得,解得或
所求不等式的解集为.
(ⅱ)由(ⅰ)可知=
= ,
因为所以,所以,当且仅当时即时取等号 ,
所以,
所以当时, .
练习册系列答案
相关题目
【题目】利用独立性检验的方法调查高中生性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用列联表,由计算可得,参照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别无关”
B. 有99%以上的把握认为“爱好该项运动与性别有关”
C. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关”