题目内容
【题目】如图,已知四棱锥中,,平面,,F,G分别是的中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】
(Ⅰ)取的中点O,连接,根据条件可证平面平面,从而可证明.
(Ⅱ)平面,平面,由得,故以点O为坐标原点,所在直线为轴建立如图所示的空间直角坐标系,利用向量法求二面角.
(Ⅰ)证明:如图,取的中点O,连接.
点分别为的中点,点O为的中点,
为梯形的中位线,.
平面,平面,
平面.
同理,,
平面,平面,
平面.
又,平面平面.
平面,平面.
(Ⅱ)平面,平面.
,
故以点O为坐标原点,所在直线为轴建立如图所示的空间直角坐标系.
在中,.
在中,.
在中,,作,垂足为点H.
在中,,,
,
,,,,
,,.
设平面的法向量为,
由
得,令,;
设平面的法向量为,
由
得
令.
设二面角的大小为,
由图可知,二面角为锐角,
则.
所以二面角的余弦值为
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .
【题目】某工厂新购置甲、乙两种设备,分别生产A,B两种产品,为了解这两种产品的质量,随机抽取了200件进行质量检测,得到质量指标值的频数统计表如下:
质量指标值 | 合计 | ||||||
A产品频数 | 2 | 6 | a | 32 | 20 | 10 | 80 |
B产品频数 | 12 | 24 | b | 27 | 15 | 6 | n |
产品质量2×2列联表
产品质量高 | 产品质量一般 | 合计 | |
A产品 | |||
B产品 | |||
合计 |
附:
(1)求a,b,n的值,并估计A产品质量指标值的平均数;
(2)若质量指标值大于50,则说明该产品质量高,否则说明该产品质量一般.请根据频数表完成列联表,并判断是否有的把握认为质量高低与引入甲、乙设备有关.