ÌâÄ¿ÄÚÈÝ

ÈôÍÖÔ²E1£º
x2
a21
+
y2
b21
=1
ºÍÍÖÔ²E2£º
x2
a22
+
y2
b22
=1
Âú×ã
a2
a1
=
b2
b1
=m(m£¾0)
£¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£¬mÊÇÏàËƱȣ®
£¨¢ñ£©Çó¹ý£¨2£¬
6
)
ÇÒÓëÍÖÔ²
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Éè¹ýÔ­µãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏ߶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏ߶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
£¨¢ñ£©ÉèÓë
x2
4
+
y2
2
=1
ÏàËƵÄÍÖÔ²µÄ·½³Ì
x2
a2
+
y2
b2
=1
£®
ÔòÓÐ
2
a
=
2
b
4
a2
+
6
b2
=1
¡­£¨3·Ö£©
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
x2
16
+
y2
8
=1
£®¡­£¨4·Ö£©
£¨¢ò£©¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
2
)£¬B(0£¬¡À2
2
)
£¬
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡­£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
y1=kx1
x21
4
+
y21
2
=1

µÃ
x21
=
4
1+2k2
y21
=
4k2
1+2k2

¡à|OA|=
2
1+k2
1+2k2
ͬÀí|OB|=
4
1+k2
1+2k2
¡­£¨7·Ö£©
ÓÖµãPÔÚlÉÏ£¬Ôòk=
y
x
£¬ÇÒÓÉx2+y2=
8(1+k2)
1+2k2
=
8(1+
y2
x2
)
1+2
y2
x2
=
8(x2+y2)
x2+2y2
£¬
¼´ËùÇó·½³ÌÊÇ
x2
8
+
y2
4
=1
£®
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
x2
8
+
y2
4
=1
£®¡­£¨9·Ö£©
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
2
•2
2
=4
£¬µ±lµÄбÂÊ´æÔÚʱ£¬
|OA|•|OB|=
8(1+k2)
1+2k2
=4+
4
1+2k2
£¬
¡à4£¼|OA|•|OB|¡Ü8£¬¡­£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡­£¨12·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø