ÌâÄ¿ÄÚÈÝ
ÈôÍÖÔ²E1£º
+
=1ºÍÍÖÔ²E2£º
+
=1Âú×ã
=
=m(m£¾0)£¬Ôò³ÆÕâÁ½¸öÍÖÔ²ÏàËÆ£¬mÊÇÏàËƱȣ®
£¨¢ñ£©Çó¹ý£¨2£¬
)ÇÒÓëÍÖÔ²
+
=1ÏàËƵÄÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Éè¹ýÔµãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏ߶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏ߶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
x2 | ||
|
y2 | ||
|
x2 | ||
|
y2 | ||
|
a2 |
a1 |
b2 |
b1 |
£¨¢ñ£©Çó¹ý£¨2£¬
6 |
x2 |
4 |
y2 |
2 |
£¨¢ò£©Éè¹ýÔµãµÄÒ»ÌõÉäÏßl·Ö±ðÓ루¢ñ£©ÖеÄÁ½ÍÖÔ²½»ÓÚA¡¢BÁ½µã£¨µãAÔÚÏ߶ÎOBÉÏ£©£®
¢ÙÈôPÊÇÏ߶ÎABÉϵÄÒ»µã£¬Èô|OA|£¬|OP|£¬|OB|³ÉµÈ±ÈÊýÁУ¬ÇóPµãµÄ¹ì¼£·½³Ì£»
¢ÚÇó|OA|•|OB|µÄ×î´óÖµºÍ×îСֵ£®
£¨¢ñ£©ÉèÓë
+
=1ÏàËƵÄÍÖÔ²µÄ·½³Ì
+
=1£®
ÔòÓÐ
¡£¨3·Ö£©
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
+
=1£®¡£¨4·Ö£©
£¨¢ò£©¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
)£¬B(0£¬¡À2
)£¬
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
µÃ
¡à|OA|=
ͬÀí|OB|=
¡£¨7·Ö£©
ÓÖµãPÔÚlÉÏ£¬Ôòk=
£¬ÇÒÓÉx2+y2=
=
=
£¬
¼´ËùÇó·½³ÌÊÇ
+
=1£®
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
+
=1£®¡£¨9·Ö£©
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
•2
=4£¬µ±lµÄбÂÊ´æÔÚʱ£¬
|OA|•|OB|=
=4+
£¬
¡à4£¼|OA|•|OB|¡Ü8£¬¡£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡£¨12·Ö£©
x2 |
4 |
y2 |
2 |
x2 | ||
|
y2 | ||
|
ÔòÓÐ
|
½âµÃa2=16£¬b2=8£®
ËùÇó·½³ÌÊÇ
x2 |
16 |
y2 |
8 |
£¨¢ò£©¢Ùµ±ÉäÏßlµÄбÂʲ»´æÔÚʱA(0£¬¡À
2 |
2 |
ÉèµãP×ø±êP£¨0£¬y0£©£¬Ôòy02=4£¬y0=¡À2£®¼´P£¨0£¬¡À2£©£®¡£¨5·Ö£©
µ±ÉäÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÆä·½³Ìy=kx£¬P£¨x£¬y£©
ÓÉA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Ôò
|
µÃ
|
¡à|OA|=
2
| ||
|
4
| ||
|
ÓÖµãPÔÚlÉÏ£¬Ôòk=
y |
x |
8(1+k2) |
1+2k2 |
8(1+
| ||
1+2
|
8(x2+y2) |
x2+2y2 |
¼´ËùÇó·½³ÌÊÇ
x2 |
8 |
y2 |
4 |
Ó֡ߣ¨0£¬¡À2£©ÊʺϷ½³Ì£¬
¹ÊËùÇóÍÖÔ²µÄ·½³ÌÊÇ
x2 |
8 |
y2 |
4 |
¢ÚÓÉ¢Ù¿ÉÖª£¬µ±lµÄбÂʲ»´æÔÚʱ£¬|OA|•|OB|=
2 |
2 |
|OA|•|OB|=
8(1+k2) |
1+2k2 |
4 |
1+2k2 |
¡à4£¼|OA|•|OB|¡Ü8£¬¡£¨11·Ö£©
×ÛÉÏ£¬|OA|•|OB|µÄ×î´óÖµÊÇ8£¬×îСֵÊÇ4£®¡£¨12·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿