题目内容
【题目】正四棱锥的底面正方形边长是3,是在底面上的射影,,是上的一点,过且与、都平行的截面为五边形.
(1)在图中作出截面,并写出作图过程;
(2)求该截面面积的最大值.
【答案】(1)见解析;(2)9.
【解析】
(1)根据题意,作辅助线,过作, 且过点作,交于点,过点作交于点,连接, 即可得出截面;
(2)由题意可知,截面,截面,根据平面,利用线面垂直的性质和判定,可证出平面,则,进而得出,所以截面是由两个全等的直角梯形组成,设,则,截面面积为,根据,代入计算,最后利用二次函数求得最大值.
解:(1)由题可知,是上的一点,过且与、都平行的截面为五边形,
过作,交于点,交于点,
过作,交于点,
再过点作,交于点,
过点作交于点,连接,
,,,
,
所以共面,平面,
,平面,
平面,同理平面.
所以过且与、都平行的截面如下图:
(2)由题意可知,截面,截面,
,,
而是在底面上的射影,,
平面,,
,且,
所以平面,则,
,
又, 为正四棱锥,
,故,
于是,
因此截面是由两个全等的直角梯形组成,
因,则为等腰直角三角形,
设,则,
所以,,
,同理得,,
又因为,
设截面面积为,
所以,
即:,
当且仅当时,有最大值为9.
所以截面的面积最大值为9.
练习册系列答案
相关题目