题目内容
【题目】已知抛物线,圆.
(1)若抛物线的焦点在圆上,且为 和圆 的一个交点,求;
(2)若直线与抛物线和圆分别相切于点,求的最小值及相应的值.
【答案】(1);(2)的最小值为,此时.
【解析】
试题分析:(1)首先求得焦点的坐标,由此求得抛物线的方程,然后联立抛物线与圆的方程求得,最后利用抛物线的定义求得的长;(2)设,由此设出直线切线的方程,然后根据求得与的关系式,从而求得关于的关系式,进而利用基本不等式求得其最小值,以及的值.
试题解析:(1)由题意得F(1,0),从而有C:x2=4y.
解方程组,得yA=-2,所以|AF|=-1. …5分
(2)设M(x0,y0),则切线l:y=(x-x0)+y0,
整理得x0x-py-py0=0. …6分
由|ON|=1得|py0|==,
所以p=且y-1>0, …8分
所以|MN|2=|OM|2-1=x+y-1=2py0+y-1
=+y-1=4++(y-1)≥8,当且仅当y0=时等号成立,
所以|MN|的最小值为2,此时p=. …12分
【题目】某社区为了解居民参加体育锻炼的情况,从该社区随机抽取了18名男性居民和12名女性居民,对他们参加体育锻炼的情况进行问卷调查.现按是否参加体育锻炼将居民分成两类:甲类(不参加体育锻炼)、乙类(参加体育锻炼),结果如下表:
甲类 | 乙类 | |
男性居民 | 3 | 15 |
女性居民 | 6 | 6 |
(Ⅰ)根据上表中的统计数据,完成下面的列联表;
男性居民 | 女性居民 | 总计 | |
不参加体育锻炼 | |||
参加体育锻炼 | |||
总计 |
(Ⅱ)通过计算判断是否有90%的把握认为参加体育锻炼与否与性别有关?
附:,其中.
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
【题目】某糕点房推出一类新品蛋糕,该蛋糕的成本价为4元,售价为8元.受保质期的影响,当天没有销售完的部分只能销毁.经过长期的调研,统计了一下该新品的日需求量.现将近期一个月(30天)的需求量展示如下:
日需求量x(个) | 20 | 30 | 40 | 50 |
天数 | 5 | 10 | 10 | 5 |
(1)从这30天中任取两天,求两天的日需求量均为40个的概率.
(2)以上表中的频率作为概率,列出日需求量的分布列,并求该月的日需求量的期望.
(3)根据(2)中的分布列求得当该糕点房一天制作35个该类蛋糕时,对应的利润的期望值为;现有员工建议扩大生产一天45个,求利用利润的期望值判断此建议该不该被采纳.