题目内容
已知曲线 y = x3 + x-2 在点 P0 处的切线 平行直线
4x-y-1=0,且点 P0 在第三象限,
求P0的坐标; ⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.
4x-y-1=0,且点 P0 在第三象限,
求P0的坐标; ⑵若直线 , 且 l 也过切点P0 ,求直线l的方程.
(1)的坐标为 ⑵
试题分析:(1)根据曲线方程求出导函数,因为已知直线的斜率为4,根据切线与已知直线平行得到斜率相等都为4,所以令导函数等于4得到关于x的方程,求出方程的解,即为切点的横坐标,代入曲线方程即可求出切点的纵坐标,又因为切点在第3象限,进而写出满足题意的切点的坐标;
(2)由直线l1的斜率为4,根据两直线垂直时斜率的乘积为-1,得到直线l的斜率为-,又根据(1)中求得的切点坐标,写出直线l的方程即可.
⑴由,得
由已知得,解之得.当时,;当时,.
又∵点在第三象限,
∴切点的坐标为.
⑵∵直线,的斜率为4,∴直线l的斜率为,
∵l过切点,点的坐标为)
∴直线l的方程为即.
练习册系列答案
相关题目