Loading [MathJax]/jax/output/CommonHTML/jax.js

题目内容

3.设函数f(x)=x3+a2x+1在区间[-2015,2015]上的最大值为m,最小值为n,且m+n=a2-2,则a=-1或2.

分析 求得f(-x)+f(x)=a,f(x)的图象关于点(0,a2)对称.则在区间[-2015,2015]上有m+n=a,结合条件,可得a的方程,即可解得a.

解答 解:由f(x)=x3+a2x+1
f(-x)+f(x)=(-x)3+a2x+1+x3+a2x+1
=(-x3+x3)+(a2x+1+a2x+1
=0+a(2x2x+1+12x+1)=a,
即有f(x)的图象关于点(0,a2)对称.
则在区间[-2015,2015]上有m+n=a,
又m+n=a2-2,则a2-a-2=0,
解得a=-1或2.
故答案为:-1或2.

点评 本题考查函数的性质和运用,主要考查对称性的运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网