题目内容

(Ⅰ)①证明两角和的余弦公式Cα+β:cos(α+β)=cosαcosβ-sinαsinβ;
②由Cα+β推导两角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.
(Ⅱ)已知cosα=-
4
5
,α∈(π,
3
2
π),tanβ=-
1
3
,β∈(
π
2
,π),cos(α+β)
,求cos(α+β).
分析:(Ⅰ)①建立单位圆,在单位圆中作出角,找出相应的单位圆上的点的坐标,由两点间距离公式建立方程化简整理既得;②由诱导公式cos[
π
2
-(α+β)]=sin(α+β)变形整理可得.
(Ⅱ)S=
1
2
AB
AC
=3
,求出角A的正弦,再由cosB=
3
5
,用cosC=-cos(A+B)求解即可.
解答:精英家教网解:(Ⅰ)①如图,在直角坐标系xOy内做单位圆O,
并作出角α、β与-β,使角α的始边为Ox,
交⊙O于点P1,终边交⊙O于P2;角β的始边为OP2
终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4
则P1(1,0),P2(cosα,sinα)
P3(cos(α+β),sin(α+β)),
P4(cos(-β),sin(-β))
由P1P3=P2P4及两点间的距离公式,得
[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2
展开并整理得:2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ)
∴cos(α+β)=cosαcosβ-sinαsinβ;(4分)
②由①易得cos(
π
2
-α)=sinα,sin(
π
2
-α)=cosα
sin(α+β)=cos[
π
2
-(α+β)]=cos[(
π
2
-α)+(-β)]
=cos(
π
2
-α)cos(-β)-sin(
π
2
-α)sin(-β)
=sinαcosβ+cosαsinβ;(6分)
(Ⅱ)∵α∈(π,
2
),cosα=-
4
5

∴sinα=-
3
5

∵β∈(
π
2
,π),tanβ=-
1
3

∴cosβ=-
3
10
10
,sinβ=
10
10

cos(α+β)=cosαcosβ-sinαsinβ
=(-
4
5
)×(-
3
10
10
)-(-
3
5
)×
10
10

=
3
10
10
点评:本小题主要考查两角和的正、余弦公式、诱导公式、同角三角函数间的关系等基础知识及运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网