ÌâÄ¿ÄÚÈÝ
8£® ÉèÍÖÔ²CµÄÖÐÐÄÔÚԵ㣬Á½½¹µãF1¡¢F2ÔÚxÖáÉÏ£¬µãPµÄ×ø±êΪ£¨2£¬1£©£¬ÒÑÖª$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=3£¬ÇÒÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£®£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èçͼ£¬ÉèÍÖÔ²CµÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬µãMÊÇÍÖÔ²CÉÏλÓÚxÖáÉÏ·½µÄÒ»¸ö¶¯µã£¬Ö±ÏßAM£¬BM·Ö±ðÓëÖ±Ïßx=3ÏཻÓÚµãD¡¢E£¬Çó|DE|µÄ×îСֵ£®
·ÖÎö £¨¢ñ£©¸ù¾ÝµãPµÄ×ø±êΪ£¨2£¬1£©£¬$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=3£¬ÏÈÇó³öC£¬½ø¶ø½áºÏÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÔÙÇó³öa£¬b£¬¿ÉµÃÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ${k}_{AM}•{k}_{BM}=-\frac{1}{2}$£¬ÉèÖ±ÏßAMµÄ·½³ÌΪ£ºy=k£¨x+2£©£¨k£¾0£©£¬ÔòÖ±ÏßBMµÄ·½³ÌΪ£ºy=$-\frac{1}{2k}$£¨x-2£©£¬·Ö±ðÓëx=3ÁªÁ¢¿ÉµÃD£¬EµÄ×ø±ê£¬½ø¶ø¸ù¾Ý»ù±¾²»µÈʽ¿ÉµÃ´ð°¸£®
½â´ð ½â£º£¨I£©ÉèÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©£¬
Á½½¹µãF1¡¢F2µÄ×ø±êΪ£¨¡Àc£¬0£©£¬c£¾0£¬
Ôò$\overrightarrow{{F}_{1}P}$=£¨2+c£¬1£©£¬$\overrightarrow{{F}_{2}P}$=£¨2-c£¬1£©£¬
¡à$\overrightarrow{{F}_{1}P}$•$\overrightarrow{{F}_{2}P}$=5-c2=3£¬
½âµÃc=$\sqrt{2}$£¬
ÓÖÓÉÍÖÔ²CµÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£®
¡àa=2£¬
¡àb2=a2-c2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬
£¨¢ò£©ÓÉ£¨I£©Öª£¬×ó¡¢ÓÒ¶¥µãA¡¢BµÄ×ø±êΪ£¨¡À2£¬0£©£¬
ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬
Ôò$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{2}=1$£¬¼´m2+2n2=4£¬¼´m2-4=-2n2£¬
¼´£¨m+2£©£¨m-2£©=-2n2£¬
¼´$\frac{£¨m+2£©}{n}•\frac{£¨m-2£©}{n}=-2$£¬¼´$\frac{n}{£¨m+2£©}•\frac{n}{£¨m-2£©}=-\frac{1}{2}$£¬
¼´${k}_{AM}•{k}_{BM}=-\frac{1}{2}$£¬
ÉèÖ±ÏßAMµÄ·½³ÌΪ£ºy=k£¨x+2£©£¨k£¾0£©£¬
ÔòÖ±ÏßBMµÄ·½³ÌΪ£ºy=$-\frac{1}{2k}$£¨x-2£©£¬
·Ö±ðÓëx=3ÁªÁ¢¿ÉµÃ£ºD£¨3£¬5k£©£¬E£¨3£¬$-\frac{1}{2k}$£©£¬
¹Ê|DE|=5k+$\frac{1}{2k}$¡Ý$\sqrt{5k•\frac{1}{2k}}$=$\sqrt{10}$£¬
µ±ÇÒ½öµ±k=$\frac{\sqrt{10}}{10}$ʱȡµÈºÅ£¬
¹Ê|DE|µÄ×îСֵΪ$\sqrt{10}$£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØϵ£¬ÊÇÖ±Ïߣ¬ÍÖÔ²£¬»ù±¾²»µÈʽ£¬ÏòÁ¿µÄÊýÁ¿»ýµÄ×ÛºÏÓ¦Óã¬ÊôÓÚÄÑÌ⣮
A£® | £¨-¡Þ£¬1£© | B£® | [0£¬1£© | C£® | £¨-¡Þ£¬0] | D£® | £¨1£¬+¡Þ£© |
A£® | $\sqrt{3}f£¨\frac{¦Ð}{6}£©$£¼$f£¨\frac{¦Ð}{3}£©$ | B£® | $\sqrt{3}f£¨\frac{¦Ð}{4}£©$£¾$\sqrt{2}f£¨\frac{¦Ð}{3}£©$ | C£® | $\sqrt{2}f£¨\frac{¦Ð}{6}£©$£¾$f£¨\frac{¦Ð}{4}£©$ | D£® | f£¨1£©$£¼2f£¨\frac{¦Ð}{6}£©•sin1$ |
A£® | 2$\sqrt{5}$ | B£® | $\sqrt{5}$»ò2$\sqrt{5}$ | C£® | $\sqrt{15}$ | D£® | ÒÔÉ϶¼²»¶Ô |