题目内容
(本小题满分16分)已知函数f(x)=是定义在R上的奇函数,其值域为.
(1) 试求a、b的值;
(2) 函数y=g(x)(x∈R)满足:
条件1: 当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).
① 求函数g(x)在x∈[3,9)上的解析式;
② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.
【答案】
解:(1) 由函数f(x)定义域为R,∴ b>0.
又f(x)为奇函数,则f(-x)=-f(x)对x∈R恒成立,得a=0.(2分)
(16分)
【解析】略
练习册系列答案
相关题目