题目内容

(本小题满分16分)已知函数f(x)=是定义在R上的奇函数,其值域为.

(1) 试求a、b的值;

(2) 函数y=g(x)(x∈R)满足:

条件1: 当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).

① 求函数g(x)在x∈[3,9)上的解析式;

② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.

 

【答案】

解:(1) 由函数f(x)定义域为R,∴ b>0.

又f(x)为奇函数,则f(-x)=-f(x)对x∈R恒成立,得a=0.(2分)

 

 

 

 

 

 

(16分)

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网