题目内容
【题目】2017年10月18日至24日,中国共产党第十九次全国人民代表大会在北京顺利召开.大会期间,北京某高中举办了一次“喜迎十九大”的读书读报知识竞赛,参赛选手为从高一年级和高二年级随机抽取的各100名学生.图1和图2分别是高一年级和高二年级参赛选手成绩的频率分布直方图.
(1)分别计算参加这次知识竞赛的两个年级学生的平均成绩;
(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.
附:
【答案】(1)高一平均分,高二平均分;(2)表格见解析,能.
【解析】
(1)根据频率分布直方图计算数据的平均成绩即可;
(2)填写2×2列联表,计算K2,对照数表即可得出结论.
(1)高一年级参赛学生的平均成绩为(45×0.04+55×0.04+65×0.01+75×0.01)×10=54(分).
高二年级参赛学生的平均成绩为(45×0.015+55×0.025+65×0.035+75×0.025)×10=62(分).
(2)补全2×2列联表,如下:
分类 | 成绩低于60分人数 | 成绩不低于60分人数 | 总计 |
高一年级 | 80 | 20 | 100 |
高二年级 | 40 | 60 | 100 |
总计 | 120 | 80 | 200 |
根据表中数据得K2的观测值k=≈33.333>6.635,
故在犯错误的概率不超过0.010的前提下,认为高一、高二两个年级学生这次读书读报知识竞赛的成绩有差异.
练习册系列答案
相关题目