题目内容
【题目】在四棱锥P﹣ABCD中,AD∥BC,AD=AB=DC=BC=1,E是PC的中点,面PAC⊥面ABCD.
(1)证明:ED∥面PAB;
(2)若PC=2,PA=,求二面角A﹣PC﹣D的余弦值.
【答案】(Ⅰ)证明过程如解析;(Ⅱ)
【解析】试题分析:(Ⅰ)取PB的中点F,连接AF,EF,由三角形的中位线定理可得四边形ADEF是平行四边形.得到DE∥AF,再由线面平行的判定可得ED∥面PAB;(Ⅱ)法一、取BC的中点M,连接AM,由题意证得A在以BC为直径的圆上,可得AB⊥AC,找出二面角A-PC-D的平面角.求解三角形可得二面角A-PC-D的余弦值.
试题解析:(Ⅰ)证明:取PB的中点F,连接AF,EF.
∵EF是△PBC的中位线,∴EF∥BC,且EF=.
又AD=BC,且AD=,∴AD∥EF且AD=EF,
则四边形ADEF是平行四边形.
∴DE∥AF,又DE面ABP,AF面ABP,∴ED∥面PAB
(Ⅱ)法一、取BC的中点M,连接AM,则AD∥MC且AD=MC,
∴四边形ADCM是平行四边形,
∴AM=MC=MB,则A在以BC为直径的圆上.∴AB⊥AC,可得.
过D作DG⊥AC于G,
∵平面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,
∴DG⊥平面PAC,则DG⊥PC.
过G作GH⊥PC于H,则PC⊥面GHD,连接DH,则PC⊥DH,
∴∠GHD是二面角A﹣PC﹣D的平面角.
在△ADC中,,连接AE,.
在Rt△GDH中,,
∴,
即二面角A﹣PC﹣D的余弦值
法二、取BC的中点M,连接AM,则AD∥MC,且AD=MC.
∴四边形ADCM是平行四边形,
∴AM=MC=MB,则A在以BC为直径的圆上,
∴AB⊥AC.
∵面PAC⊥平面ABCD,且平面PAC∩平面ABCD=AC,∴AB⊥面PAC.
如图以A为原点,方向分别为x轴正方向,y轴正方向建立空间直角坐标系.
可得,.
设P(x,0,z),(z>0),依题意有,,
解得.
则,,.
设面PDC的一个法向量为,
由,取x0=1,得.
为面PAC的一个法向量,且,
设二面角A﹣PC﹣D的大小为θ,
则有,即二面角A﹣PC﹣D的余弦值.