题目内容

过点且与曲线相切的直线方程是(      )

A.
B.
C.
D.

D

解析试题分析:设切点为(x0,y0),则y0=x03+1,由于直线l经过点(1,1),可得切线的斜率,再根据导数的几何意义求出曲线在点x0处的切线斜率,便可建立关于x0的方程.从而可求方程.∵y′=3x2,∴y′|x=x0=3x02,则可知y- (x03+1)= 3x02(x- x0)∴2x02-x0-1=0,∴x0=1,x0=-∴过点A(1,1)与曲线C:y=x3+1相切的直线方程为,选D.
考点:导数的几何意义
点评:此题考查学生会利用导数求曲线上过某点切线方程的斜率,会根据一点坐标和斜率写出直线的方程,是一道综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网