题目内容

【题目】设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为(
A.(﹣1,0)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

【答案】A
【解析】解:设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)>0,
∴函数g(x)在区间(0,+∞)上是增函数,
∵f(x)是定义在R上的偶函数,
∴g(x)=xf(x)是R上的奇函数,
∴函数g(x)在区间(﹣∞,0)上是增函数,
∵f(1)=0,
∴f(﹣1)=0;
即g(﹣1)=0,g(1)=0
∴xf(x)>0化为g(x)>0,
设x>0,故不等式为g(x)>g(1),即1<x;
设x<0,故不等式为g(x)>g(﹣1),即﹣1<x<0.
故所求的解集为(﹣1,0)∪(1,+∞)
故选A.
由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(1)=0得g(1)=0、还有g(﹣1)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网