题目内容

 (本小题满分14分)

已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.

(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;

(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.

①求证:x1>1>x2

②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

 

【答案】

(1)[,e](2)①分别求f(x)和g(x)在点(x1, f (x1))和(x2, g(x2))的切线,记为公切线,所以斜率和截距分别相同,从而得证结论;②(-∞,1]

【解析】

试题分析:(1)依题意对x∈(0,+∞)均有ex≥kx≥lnx成立,

即对任意x∈(0,+∞)均有≥k≥成立,                         ……1分

∴()min≥k≥

因为=,故在(0,1)上减,(1,+∞)增,

∴(min=e,

 ,故在(0,e)上减,(e,+∞)增,

 ,即k的取值范围是[,e] .                              ……5分

(2)由题知:h(x)即为y-e= e(x-x1)即y=e·x+ e-x1 e,

也为y=lnx2=即y=+lnx2-1,

,                                                ……6分

又x1=0   ∴e>1 即>1x1>1即x1>1>x2,                                                      ……8分

(3)令F(x)=ax2-x+xe+1(x≥x1),

∴F′(x)= -1-xe+e=-1+e(1-x)( x≥x1)

又x≥x1>1    F′(x)= -1-xe+e=-1+e(1-x)<0,

即F(x)=ax2-x+xe+1(x≥x1)单减,

所以只要F(x)≤F(x1)= ax2-x1+1xe+1≤0,

即a+ x1-x1e+ e≤0.                                                  ……12分

,

,

故只要≤0得:a≤1,

综上,实数a的取值范围是(-∞,1].                                    ……14分

考点:本小题主要考查利用导数研究函数的单调性、极值、最值等和利用导数求曲线的切线,和利用导数解决恒成立问题,考查学生综合运算所学知识分析问题、解决问题的能力和运算求解能力.

点评:导数是研究函数性质的有力工具,要熟练应用,而恒成立问题一般要转化为最值问题解决.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网