题目内容
【题目】在直角坐标系xOy中,曲线C1: (t为参数,t ≠ 0),其中0 ≤ α < π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2: ,C3: .
(1)求C2与C3交点的直角坐标;
(2)若C1与C2相交于点A,C1与C3相交于点B,求 的最大值.
【答案】
(1)解:曲线 的直角坐标方程为 ,
曲线 的直角坐标方程为 .
联立 解得 或
所以 与 交点的直角坐标为 和
(2)解:曲线 的极坐标方程为 ,其中
因此 的极坐标为 , 的极坐标为
所以
当 时, 取得最大值,最大值为4
【解析】(1)将C2与C3转化为直角坐标方程,解方程组即可求出交点坐标;(2)求出A,B的极坐标,利用距离公式进行求解.
练习册系列答案
相关题目