题目内容

【题目】如图所示,在四棱锥P﹣ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD⊥面ABCD,E、F分别为棱AB、PC的中点.
(1)求证:EF∥平面PAD;
(2)求三棱锥B﹣EFC的体积;
(3)求二面角P﹣EC﹣D的正切值.

【答案】
(1)证明:取PD中点G,连结GF、AG,

∵GF为△PDC的中位线,∴GF∥CD且

又AE∥CD且 ,∴GF∥AE且GF=AE,

∴EFGA是平行四边形,则EF∥AG,

又EF面PAD,AG面PAD,

∴EF∥面PAD


(2)解:取AD中点O,连结PO,

∵面PAD⊥面ABCD,△PAD为正三角形,∴PO⊥面ABCD,且

又PC为面ABCD斜线,F为PC中点,∴F到面ABCD距离


(3)解:连OB交CE于M,可得Rt△EBC≌Rt△OAB,

∴∠MEB=∠AOB,则∠MEB+∠MBE=90°,即OM⊥EC.

连PM,又由(2)知PO⊥EC,可得EC⊥平面POM,则PM⊥EC,

即∠PMO是二面角P﹣EC﹣D的平面角,

在Rt△EBC中, ,∴

,即二面角P﹣EC﹣D的正切值为


【解析】(1)取PD中点G,连结GF、AG,由三角形中位线定理可得GF∥CD且 ,再由已知可得AE∥CD且 ,从而得到EFGA是平行四边形,则EF∥AG,然后利用线面平行的判定可得EF∥面PAD;(2)取AD中点O,连结PO,由面面垂直的性质可得PO⊥面ABCD,且 ,求出F到面ABCD距离 ,然后利用等积法求得三棱锥B﹣EFC的体积;(3)连OB交CE于M,可得Rt△EBC≌Rt△OAB,得到OM⊥EC.进一步证得PM⊥EC,可得∠PMO是二面角P﹣EC﹣D的平面角,然后求解直角三角形可得二面角P﹣EC﹣D的正切值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网