题目内容
【题目】已知在中,,且.
(1)求角的大小;
(2)设数列满足,前项和为,若,求的值.
【答案】(1);(2)或.
【解析】试题分析:
(1)由题意结合三角形内角和为可得.由余弦定理可得,,结合勾股定理可知为直角三角形,,.
(2)结合(1)中的结论可得 .则 ,据此可得关于实数k的方程,解方程可得,则或.
试题解析:
(1)由已知,又,所以.又由,
所以,所以,
所以为直角三角形,,.
(2) .
所以 ,由,得
,所以,所以,所以或.
【题型】解答题
【结束】
18
【题目】已知点是平行四边形所在平面外一点,如果,,.(1)求证:是平面的法向量;
(2)求平行四边形的面积.
【答案】(1)证明见解析;(2).
【解析】试题分析:
(1)由题意结合空间向量数量积的运算法则计算可得,.则,,结合线面垂直的判断定理可得平面,即是平面的法向量.
(2)利用平面向量的坐标计算可得,,,则,,.
试题解析:
(1)∵,
.
∴,,又,∴平面,
∴是平面的法向量.
(2)∵ ,,
∴,
∴,
故, .
【题目】某重点中学将全部高一新生分成A,B两个成绩相当(成绩的均值、方差都相同)的级部,A级部采用传统形式的教学方式,B级部采用新型的基于信息化的自主学习教学方式.期末考试后分别从两个级部中各随机抽取100名学生的数学成绩进行统计,得到如下数据:
A级部教学 成绩分组 | ||||||
频数 | 18 | 23 | 29 | 23 | 6 | 1 |
B级部教学 成绩分组 | ||||||
频数 | 8 | 16 | 24 | 28 | 21 | 3 |
若成绩不低于130分者为“优秀”.
根据上表数据分别估计A,B两个级部“优秀”的概率;
(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为“优秀”与教学方式有关?
是否优秀 级部 | 优秀 | 不优秀 | 合计 |
A级部 | |||
B级部 | |||
合计 |
(3)根据上表数据完成下面的频率分布直方图,并根据频率分布直方图,分别求出A,B两个级部的中位数的估计值(精确到);请根据以上计算结果初步分析A,B两个级部的教学成绩的优劣.
附表:
附:
【题目】我国城市空气污染指数范围及相应的空气质量类别见下表:
空气污染指数 | 空气质量 | 空气污染指数 | 空气质量 | |
0--50 | 优 | 201--250 | 中度污染 | |
51--100 | 良 | 251--300 | 中度重污染 | |
101--150 | 轻微污染 | >300 | 重污染 | |
151----200 | 轻度污染 |
我们把某天的空气污染指数在0-100时称作A类天,101--200时称作B类天,大于200时称作C类天.下图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十.个位为叶)
(1)从这18天中任取3天,求至少含2个A类天的概率;
(2)从这18天中任取3天,记X是达到A类或B类天的天数,求X的分布列及数学期望.