题目内容

【题目】在平面直角坐标系xoy中,已知直线l:x+y+a=0与点A(0,2),若直线l上存在点M满足|MA|2+|MO|2=10(O为坐标原点),则实数a的取值范围是(
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]

【答案】D
【解析】解:设M(x,﹣x﹣a),
∵直线l:x+y+a=0,点A(0,2),直线l上存在点M,满足|MA|2+|MO|2=10,
∴x2+(x+a)2+x2+(﹣x﹣a﹣2)2=10,
整理,得4x2+2(2a+2)x+a2+(a+2)2﹣10=0①,
∵直线l上存在点M,满足|MA|2+|MO|2=10,
∴方程①有解,
∴△=4(2a+2)2﹣16[a2+(a+2)2﹣10]≥0,
解得:﹣2 ﹣1≤a≤2 ﹣1,
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网