题目内容

如图,直线相交于点P.直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn}.
(Ⅰ)证明
(Ⅱ)求数列{xn}的通项公式;
(Ⅲ)比较2|PPn|2与4k2|PP1|2+5的大小.

【答案】分析:(I)由题意及各点的产生情况直线l1与x轴交于点P1,过点P1作x轴的垂线交直线l2于点Q1,过点Q1作y轴的垂线交直线l1于点P2,过点P2作x轴的垂线交直线l2于点Q2,…,这样一直作下去,可得到一系列点P1、Q1、P2、Q2,…,点Pn(n=1,2,…)的横坐标构成数列{xn},读懂它即可得证;
(II)因为已知的直线l1方程且知直线l1与x轴交于点P1,可以求出点P1,在有(I)的证明结论可以得到数列{xn}的递推关系利用构造法求出其通项;
(III)先由题意得到点P的坐标为(1,1),在有两点间的距离的公式得2|PPn|2的式子,有式子与4k2|PP1|2+5比较大小.
解答:解:(Ⅰ)证明:设点Pn的坐标是(xn,yn),由已知条件得
点Qn、Pn+1的坐标分别是:
由Pn+1在直线l1上,得
所以,即
(Ⅱ)由题设知,又由(Ⅰ)知
所以数列{xn-1}是首项为x1-1,公比为的等比数列.
从而
(Ⅲ)解:由得到点P的坐标为(1,1),
所以
(i)当时,4k2|PP1|2+5>1+9=10.
而此时
(ii)当时,4k2|PP1|2+5<1+9=10.
而此时
点评:此题重点考查了对于题意的准确理解,还考查了两点间的距离公式及构造法求数列的通项公式,此外还考查了比较含字母的式子的大小分类讨论的思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网