题目内容

请考生在下列两题中任选一题作答,若两题都做,则按所做的第一题评阅计分.
1(1).(几何证明选讲选做题)如图,四边形ABCD是圆O的内接四边形,
延长AB和DC相交于点P,若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
6
6
6
6

(2).(坐标系与参数方程选做题) 极坐标系中,A为曲线ρ2+2ρcosθ-3=0上
的动点,B为直线ρcosθ+ρsinθ-7=0的动点,则|AB|距离的最小值为
4
2
-2
4
2
-2
分析:(1)由四边形ABCD是圆O的内接四边形,知∠PBC=∠D,∠PCB=∠A,故△PBC∽△PDA,设PB=x,PC=y,由
PB
PA
=
1
2
PC
PD
=
1
3
,得PA=2x,PD=3y,由此能求出
BC
AD

(2)曲线ρ2+2ρcosθ-3=0是圆心为(-1,0),半径为r=
1
2
4+12
=2的圆,直线ρcosθ+ρsinθ-7=0的普通方程为x+y-7=0,由此利用点到直线的距离公式能求出|AB|距离的最小值.
解答:解:(1)∵四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P,
∴∠PBC=∠D,∠PCB=∠A,
∴△PBC∽△PDA,
设PB=x,PC=y,
PB
PA
=
1
2
PC
PD
=
1
3

∴PA=2x,PD=3y,
由△PBC∽△PDA,得
BC
AD
=
PB
PD
=
PC
PA

x
3y
=
y
2x
,解得y=
6
3
x

BC
AD
=
x
3y
=
x
6
3
x
=
6
6

故答案为:
6
6

(2)∵曲线ρ2+2ρcosθ-3=0的普通方程为x2+y2+2x-3=0,
∴曲线是圆心为(-1,0),半径为r=
1
2
4+12
=2的圆,
∵直线ρcosθ+ρsinθ-7=0的普通方程为x+y-7=0,
∴圆心为(-1,0)到直线的距离d=
|-1+0-7|
2
=4
2

∴|AB|距离的最小值为4
2
-2

故答案为:4
2
-2
点评:第(1)考查圆的内接四边形的性质及其应用,第(2)题考查圆和直线的极坐标方程的应用.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网