题目内容
【题目】某网络商城在年月日开展“庆元旦”活动,当天各店铺销售额破十亿,为了提高各店铺销售的积极性,采用摇号抽奖的方式,抽取了家店铺进行红包奖励.如图是抽取的家店铺元旦当天的销售额(单位:千元)的频率分布直方图.
(1)求抽取的这家店铺,元旦当天销售额的平均值;
(2)估计抽取的家店铺中元旦当天销售额不低于元的有多少家;
(3)为了了解抽取的各店铺的销售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.
【答案】(1)元;(2)32家;(3)分布列见解析;
【解析】
(1)根据频率分布直方图求出各组频率,再由平均数公式,即可求解;
(2)求出的频率即可;
(3)中的个数的所有可能取值为,,,求出可能值的概率,得到分布列,由期望公式即可求解.
(1)频率分布直方图销售额的平均值为
千元,
所以销售额的平均值为元;
(2)不低于元的有家
(3)销售额在的店铺有家,
销售额在的店铺有家.选取两家,
设销售额在的有家.则的所有可能取值为,,.
,,
所以的分布列为
数学期望
【题目】已知函数的定义域为,部分对应值如下表:
0 | 4 | 5 | ||
1 | 2 | 2 | 1 |
的导函数的图象如图所示,关于的命题正确的是( )
A.函数是周期函数
B.函数在上是减函数
C.函数的零点个数可能为0,1,2,3,4
D.当时,函数有 4个零点
【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:
参加文体活动 | 不参加文体活动 | 合计 | |
学习积极性高 | 80 | ||
学习积极性不高 | 60 | ||
合计 | 200 |
已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.
(1)请将上面的列联表补充完整;
(2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;
(3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.