题目内容

【题目】记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).

【答案】解:(1)由2x﹣3>0 得 x>,∴M={x|x>}.
由(x﹣3)(x﹣1)>0 得 x<1 或x>3,∴N={x|x<1,或 x>3}.
(2)M∩N=(3,+∞),M∪N={x|x<1,或 x>3},
∴CR(M∪N)=[1 ].
【解析】(1)求函数f(x)的定义域求得M,求函数g(x)的定义域求得N.
(2)根据两个集合的交集的定义求得 M∩N,再根据两个集合的并集的定义求得M∪N,再根据补集的定义求得CR(M∪N).
【考点精析】关于本题考查的交、并、补集的混合运算和对数函数的定义域,需要了解求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法;对数函数的定义域范围:(0,+∞)才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网