题目内容
5.已知sinθcosθ<0,那么角θ是( )A. | 第一或第二象限角 | B. | 第二或第三象限角 | ||
C. | 第二或第四象限角 | D. | 第一或第四象限角 |
分析 根据题意列出不等式组,由三角函数值的符号判断出θ所在的象限.
解答 解:由题意知,sinθcosθ<0,
则$\left\{\begin{array}{l}{sinθ>0}\\{cosθ<0}\end{array}\right.$或$\left\{\begin{array}{l}{sinθ<0}\\{cosθ>0}\end{array}\right.$,所以角θ在第二或第四象限,
故选:C.
点评 本题考查角函数值的符号的应用,需要掌握口诀:一全正、二正弦、三正切、四余弦,属于基础题.
练习册系列答案
相关题目
17.$\frac{1}{2}+({\frac{1}{2}+\frac{1}{4}})+({\frac{1}{2}+\frac{1}{4}+\frac{1}{8}})+…+({\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{{2^{10}}}}})$的值为( )
A. | 7+$\frac{1}{2^9}$ | B. | 9+$\frac{1}{{{2^{10}}}}$ | C. | 11+$\frac{1}{{{2^{11}}}}$ | D. | 7+$\frac{1}{{{2^{10}}}}$ |
16.通过随机询问200名性别不同的大学生是否爱好“踢毽子运动”,计算得到统计量值k2的观测值k≈4.892,参照下表,得到的正确结论是( )
P(k2≥k) | 0.10 | 0.05 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
A. | 在犯错误的概率不超过5%的前提下,认为“爱好该运动与性别有关” | |
B. | 在犯错误的概率不超过5%的前提下,认为“爱好该运动与性别无关” | |
C. | 有99%以上的把握认为“爱好该运动与性有关” | |
D. | 有99%以上的把握认为“爱好该运动与性别无关” |
20.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+…+\frac{1}{100}$的一个程序框图,则判断框内应填入关于i的不等式为( )
A. | i<50 | B. | i>50 | C. | i<51 | D. | i>51 |
13.下列说法正确的是( )
A. | 已知购买一张彩票中奖的概率为$\frac{1}{1000}$,则购买1000张这种彩票一定能中奖 | |
B. | 互斥事件一定是对立事件 | |
C. | 二进制数1101(2)转化为十进制数是13 | |
D. | 若样本x1,x2…xn的方差为4,则样本x1-1,x2-1,…,xn-1的方差为3 |
13.已知△ABC的三条边长分别为3,4,5,如果把三角形的三边都增加相同的长度,则这个新三角形的形状为( )
A. | 锐角三角形 | B. | 直角三角形 | ||
C. | 钝角三角形 | D. | 由增加的长度决定 |