题目内容
【题目】如图,在四棱锥中,底面是矩形,,,底面.
(1)当为何值时,平面?证明你的结论;
(2)若在边上至少存在一点,使,求的取值范围.
【答案】(1),证明见详解;(2)
【解析】
(1)要证平面,只需证垂直于平面内的两条相交直线,由题意可知,则只需证明,只有当四边形为正方形时满足.
(2)由题意可知,若存在点,使,则平面,即,则点应是以为直径的圆和边的一个公共点,即半径,求解即可.
(1)当时,四边形为正方形,则.
因为平面,平面,
所以,
又,平面,平面
所以平面.
故当时,平面.
(2)设是符合条件的边上的点.
因为平面,平面
所以,
又,,平面,平面
所以平面,
因为平面,
所以.
因此,点应是以为直径的圆和边的一个公共点.
则半径, 即.
所以.
练习册系列答案
相关题目