题目内容
【题目】已知函数.
(1)求曲线在点
处的切线方程;
(2)设,计算
的导数.
【答案】(1).(2)
.
【解析】试题分析:(1)由导数的基本定义就出斜率,根据点斜式写出切线方程;(2)
,
.
试题解析:
(1),则
,
又,∴所求切线方程为
,即
.
(2),
.
【题型】解答题
【结束】
18
【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这
名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(1)求出表中及图中
的值;
(2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.
【答案】(1),
,
;(2)
人.
【解析】试题分析:(1)由题意, 内的频数是10,频率是0.25知,
,所以
,则
,
.(2)高一学生有800人,分组
内的频率是
,人数为
人.
试题解析:
(1)由内的频数是10,频率是0.25知,
,所以
.
因为频数之和为40,所以,
.
.
因为是对应分组
的频率与组距的商,所以
.
(2)因为该校高一学生有800人,分组内的频率是
,
所以估计该校高一学生参加社区服务的次数在此区间内的人数为人.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算电费每月用电不超过100度仍按原标准收费,超过的部分每度按0.5元计算.
Ⅰ.设月用电x度时,应交电费y元,写出y关于x的函数关系式;
Ⅱ.小明家第一季度缴纳电费情况如下:
月份 | 一月 | 二月 | 三月 | 合计 |
缴费金额 | 76元 | 63元 | 45.6元 | 184.6元 |
问小明家第一季度共用多少度?
【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:
井号 | 1 | 2 | 3 | 4 | 5 | 6 |
坐标 | ||||||
钻探深度( | 2 | 4 | 5 | 6 | 8 | 10 |
出油量( | 40 | 70 | 110 | 90 | 160 | 205 |
(参考公式和计算结果: ,
,
,
)
(1)号旧井位置线性分布,借助前
组数据求得回归直线方程为
;求
,并估计
的预报值;
(2)现准备勘探新井,若通过1,3,5,7号并计算出的
,
的值(
,
精确到
)相比于(1)中的
,
,且
,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?