题目内容
20.已知平面区域Ω:$\left\{\begin{array}{l}{(x+2y-1)(x-2y+3)≥0}\\{|x-1|≤3}\end{array}\right.$,则Ω的面积为( )A. | 11 | B. | 13 | C. | 15 | D. | 17 |
分析 作出不等式组对应的平面区域,根据对应的图象即可求出对应的面积.
解答 解:作出不等式组对应的平面区域如图:
由$\left\{\begin{array}{l}{x+2y-1=0}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即C(-1,-1),
当$\left\{\begin{array}{l}{x=-2}\\{x+2y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=\frac{3}{2}}\end{array}\right.$,即A(-2,$\frac{3}{2}$),
由$\left\{\begin{array}{l}{x=-2}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=\frac{1}{2}}\end{array}\right.$,即B(-2,$\frac{1}{2}$),
由$\left\{\begin{array}{l}{x=4}\\{x+2y-1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-\frac{3}{2}}\end{array}\right.$,即E(4,-$\frac{3}{2}$),
由$\left\{\begin{array}{l}{x=4}\\{x-2y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=\frac{7}{2}}\end{array}\right.$,即D(4,$\frac{7}{2}$),
则△ABC的面积为$\frac{1}{2}×(\frac{3}{2}-\frac{1}{2})×[-1-(-2)]$=$\frac{1}{2}$,
则△CDE的面积为$\frac{1}{2}$=$\frac{1}{2}$[$\frac{7}{2}$-(-$\frac{3}{2}$)]×[4-(-1)]=$\frac{25}{2}$,
则阴影部分的面积之和为$\frac{1}{2}$+$\frac{25}{2}$=13,
故选:B.
点评 本题主要考查阴影部分的面积的计算,根据条件作出对应的平面区域是解决本题的关键.
A. | $\frac{139}{234}$ | B. | $\frac{134}{198}$ | C. | $\frac{175}{264}$ | D. | $\frac{28}{93}$ |
A. | (12,20] | B. | (20,30] | C. | (30,42] | D. | (12,42] |
A. | -1 | B. | 1 | C. | -3 | D. | 3 |