题目内容
9.已知$\frac{a+2i}{b+i}$=i(a,b∈R),其中i为虚数单位,则a+b等于( )A. | -1 | B. | 1 | C. | -3 | D. | 3 |
分析 利用复数的运算法则、复数相等即可得出.
解答 解:∵$\frac{a+2i}{b+i}$=i,∴a+2i=-1+bi,
∴a=-1,2=b,
∴a+b=1.
故选:B.
点评 本题考查了复数的运算法则、复数相等,属于基础题.
练习册系列答案
相关题目
19.已知双曲线的一个焦点与抛物线x2=24y的焦点重合,其一条渐近线的倾斜角为30℃,则该双曲线的标准方程为( )
A. | $\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}=1$ | B. | $\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$ | C. | $\frac{{y}^{2}}{12}-\frac{{x}^{2}}{24}=1$ | D. | $\frac{{y}^{2}}{24}-\frac{{x}^{2}}{12}=1$ |
20.已知平面区域Ω:$\left\{\begin{array}{l}{(x+2y-1)(x-2y+3)≥0}\\{|x-1|≤3}\end{array}\right.$,则Ω的面积为( )
A. | 11 | B. | 13 | C. | 15 | D. | 17 |
17.如图,网格纸中的小正方形的边长为1,图中组线画出的是一个几何体的三视图,则这个几何体的表面积为( )
A. | $\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+4$) | B. | $\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+8$) | C. | $\frac{1}{2}$($\sqrt{22}+\sqrt{2}+8$) | D. | $\frac{1}{2}$($\sqrt{22}+2\sqrt{2}+8$) |
4.一枚质地均匀的正方体骰子,六个面上分别刻着1点至6点.甲、乙二人各掷骰子一次,则甲掷得的向上的点数比乙大的概率为( )
A. | $\frac{2}{9}$ | B. | $\frac{1}{4}$ | C. | $\frac{5}{12}$ | D. | $\frac{1}{2}$ |
1.如图所示是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框应该填入( )
A. | P=$\frac{4M}{N}$ | B. | P=$\frac{N}{4M}$ | C. | P=$\frac{M}{N}$ | D. | p=$\frac{N}{M}$ |
18.一个几何体的三视图如图所示,那么这个几何体的体积为( )
A. | 16π | B. | 6π | C. | 4π | D. | 8 |