题目内容
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=6
,E是PB上任意一点.
(1)求证:AC⊥DE;
(2)当△AEC面积的最小值是9时,证明EC⊥平面PAB.
3 |
(1)求证:AC⊥DE;
(2)当△AEC面积的最小值是9时,证明EC⊥平面PAB.
分析:(1)先证明AC⊥平面PBD,再证明AC⊥DE;
(2)利用△AEC面积的最小值是9,求出EF,再利用线面垂直的判定定理可得结论.
(2)利用△AEC面积的最小值是9,求出EF,再利用线面垂直的判定定理可得结论.
解答:(1)证明:连接BD,设AC与BD相交于点F.
因为四边形ABCD是菱形,所以AC⊥BD.
又因为PD⊥平面ABCD,AC?平面PDBE,所以PD⊥AC,
因为BD∩PD=D,所以AC⊥平面PBD
因为E为PB上任意一点,所以DE?平面PBD,所以AC⊥DE;
(2)证明:连ED.
由(1),知AC⊥平面PDB,EF?平面PBD,所以AC⊥EF.
S△ACE=
AC•EF,在△ACE面积最小时,EF最小,则EF⊥PB,
所以S△ACE=9,
×6×EF=9,解得EF=3
由PB⊥EF且PB⊥AC得PB⊥平面AEC,则PB⊥EC,
又由EF=AF=FC=3得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB.
因为四边形ABCD是菱形,所以AC⊥BD.
又因为PD⊥平面ABCD,AC?平面PDBE,所以PD⊥AC,
因为BD∩PD=D,所以AC⊥平面PBD
因为E为PB上任意一点,所以DE?平面PBD,所以AC⊥DE;
(2)证明:连ED.
由(1),知AC⊥平面PDB,EF?平面PBD,所以AC⊥EF.
S△ACE=
1 |
2 |
所以S△ACE=9,
1 |
2 |
由PB⊥EF且PB⊥AC得PB⊥平面AEC,则PB⊥EC,
又由EF=AF=FC=3得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB.
点评:本题考查线面垂直的判定与性质,考查学生空间想象能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目