ÌâÄ¿ÄÚÈÝ
5£®¶¨Ò壺½«Ô²ÐIJ»Í¬µÄÁ½Ô²·½³ÌC1£º£¨x-a1£©2+£¨y-b1£©2=r12ÓëC2£º£¨x-a2£©2+£¨y-b2£©2=r22Á½±ß·Ö±ðÏà¼õËùµÃµÄÖ±Ïßm³ÆΪÁ½Ô²µÄ¸ùÖᣮ£¨1£©ÇóÖ¤£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÓëÁ½Ô²Ô²ÐĵÄÁ¬Ïß´¹Ö±£»
£¨2£©ÇóÖ¤£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµãµ½Á½Ô²µÄÇÐÏß³¤ÏàµÈ£»
£¨3£©ÀûÓÃÉÏÊö·½·¨Åжϣ¬¶ÔÓÚÔ²C£ºx2+y2-2x+4y-4=0À´Ëµ£¬ÊÇ·ñ´æÔÚбÂÊΪ1µÄÖ±Ïßl£¬Ê¹ÒÔl±»Ô²C½ØµÃµÄÏÒABΪֱ¾¶µÄÔ²£¬¾¹ýԵ㣿Èô´æÔÚ£¬Ð´³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÓÉÌõ¼þÀûÓá°¸ùÖᡱµÄ¶¨Ò壬¸ù¾ÝÔ²Ðĺ͹«¹²ÏÒµÄÖеãµÄÁ¬Ïß´¹Ö±ÇÒƽ·ÖÏÒ£¬¿ÉµÃ¡°¸ùÖᡱËùÔÚÖ±ÏßmÓëÁ½Ô²Ô²ÐĵÄÁ¬Ïß´¹Ö±£®
£¨2£©Ö¤Ã÷£ºÉèµãMÊÇ£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµã£¬ÈçͼËùʾ£ºMP¡¢MQ·Ö±ðΪÁ½Ô²µÄÇÐÏß³¤£¬ÔòÓÉÇиîÏ߶¨Àí¿ÉµÃMP=MQ£®
£¨3£©¼ÙÉè´æÔÚÖ±Ïßl£ºy=x+b£¬°ÑËü´úÈëÔ²µÄ·½³Ì¿ÉµÃ2x2+£¨2b+2£©b2+4b-4=0 ¢Ù£¬ÉèA£¨x1£¬y1£©¡¢B£¨ x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí¡¢ÒÔ¼°OA¡ÍOB£¬¿ÉµÃ x1•x2+y1•y2=0£¬ÇóµÃb=1£¬»òb=-4£®ÔÙ°Ñb=1£¬»òb=-4´úÈë¢Ù¼ìÑ飬Åбðʽ¾ù´óÓÚÁ㣬¿ÉµÃÂú×ãÌõ¼þµÄÖ±ÏßÓÐÁ½Ìõ£®
½â´ð ½â£º£¨1£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉµÃ¡°¸ùÖᡱ¼´Á½Ô²µÄ¹«¹²ÏÒËùÔÚµÄÖ±Ïߣ¬ÔÙ¸ù¾ÝÁ½Ô²ÏཻµÄÐÔÖʿɵã¬
Ô²Ðĺ͹«¹²ÏÒµÄÖеãµÄÁ¬Ïß´¹Ö±ÇÒƽ·ÖÏÒ£¬
¹Ê¡°¸ùÖᡱËùÔÚÖ±ÏßmÓëÁ½Ô²Ô²ÐĵÄÁ¬Ïß´¹Ö±£®
£¨2£©Ö¤Ã÷£ºÉèµãMÊÇ£º¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµã£¬ÈçͼËùʾ£ºMP¡¢MQ·Ö±ðΪÁ½Ô²µÄÇÐÏß³¤£¬
ÔòÓÉÇиîÏ߶¨Àí¿ÉµÃMA•MB=MP2£¬MA•MB=MQ2£¬¡àMP=MQ£¬
¼´¡°¸ùÖᡱËùÔÚÖ±ÏßmÉÏÔÚÔ²Íⲿ·ÖµÄµãµ½Á½Ô²µÄÇÐÏß³¤ÏàµÈ£®
£¨3£©¼ÙÉè´æÔÚÖ±Ïßl£ºy=x+b£¬ÔòÓÉ$\left\{\begin{array}{l}{{x}^{2}{+y}^{2}-2x+4y-4=0}\\{y=x+b}\end{array}\right.$£¬¿ÉµÃ2x2+£¨2b+2£©b2+4b-4=0 ¢Ù£¬
ÉèA£¨x1£¬y1£©¡¢B£¨ x2£¬y2£©£¬Ôòx1+x2=-b-1£¬x1•x2=$\frac{{b}^{2}+2b-4}{2}$£¬
¡ày1•y2=£¨x1+b£©£¨x2+b£©=x1•x2+b£¨x1+x2£©+b2=$\frac{{b}^{2}+4b-4}{2}$+b£¨-b-1£©+b2=$\frac{{b}^{2}+2b-4}{2}$£®
ÓÖOA¡ÍOB£¬¡àx1•x2+y1•y2=0£¬¼´ $\frac{{b}^{2}+4b-4}{2}$+$\frac{{b}^{2}+2b-4}{2}$=0£¬ÇóµÃb=1£¬»òb=-4£®
ÔÙ°Ñb=1£¬»òb=-4´úÈë¢Ù¼ìÑ飬Åбðʽ¾ù´óÓÚÁ㣬¹ÊÂú×ãÌõ¼þµÄÖ±ÏßÓÐÁ½Ìõ£¬¼´ x-y+1=0 x-y-4=0£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨Ò壬ԲµÄÇиîÏ߶¨Àí£¬Ö±ÏߺÍÔ²ÏཻµÄÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
A£® | A£¬BÏ໥¶ÀÁ¢ | B£® | A£¬B»¥²»ÏàÈÝ | C£® | P£¨A+B£©=P£¨A£©+P£¨B£© | D£® | B?A |