题目内容

倾斜角为
π4
的直线l经过抛物线y2=4x的焦点,且与抛物线相交于A、B两点,求线段AB的长.
分析:先根据题意写出直线的方程,再将直线的方程与抛物线y2=4x的方程组成方程组,消去y得到关于x的二次方程,最后利用根与系数的关系结合抛物线的定义即可求线段AB的长.
解答:解:设A(x1,),B(x2,),A,B到准线的距离分别为dA,dB
由抛物线的定义可知|AF|=dA=x1+1,|BF|=dB=x2+1,于是|AB|=|AF|+|BF|=x1+x2+2.(3分)
由已知得抛物线的焦点为F(1,0),斜率k=tan
π
4
=1,所以直线AB方程为y=x-1.(6分)
将y=x-1代入方程y2=4x,得(x-1)2=4x,化简得x2-6x+1=0.
由求根公式得x1=3+2
2
,x2=3-2
2
,(9分)
于是|AB|=|AF|+|BF|=x1+x2+2=8.
所以,线段AB的长是8.(12分)
点评:本题主要考查了抛物线的应用以及直线与圆锥曲线的综合问题和方程的思想,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网