题目内容

1.为调查某地区高三学生是否需要心理疏导,用简单随机抽样方法从该校调查了500位高三学生,结果如下:
 
需要4030
不需要160270
(Ⅰ)估计该地区高三学生中,需要心理疏导的高三学生的百分比;
(Ⅱ)能否有99%的把握认为该地区高三学生是否需要心理疏导与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的抽样方法来调查估计该地区高三学生中,需要提供心理疏导的高三学生的比例?请说明理由.
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.050.0250.0100.001
k03.8415.0246.63510.828

分析 (Ⅰ)由列联表可知调查的500位老年人中有40+30=70位需要志愿者提供帮助,两个数据求比值得到该地区老年人中需要帮助的老年人的比例的估算值.
(Ⅱ)根据列联表所给的数据,代入随机变量的观测值公式,得到观测值的结果,把观测值的结果与临界值进行比较,看出有多大把握说该地区的老年人是否需要帮助与性别有关.
(Ⅲ)从样本数据老年人中需要帮助的比例有明显差异,调查时,可以先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.

解答 解:(Ⅰ)∵调查的500位老年人中有40+30=70位需要志愿者提供帮助,
∴该地区老年人中需要帮助的老年人的比例的估算值为$\frac{70}{500}$=14%.
(Ⅱ)根据列联表所给的数据,代入随机变量的观测值公式,
k2=$\frac{500×(40×270-30×160)^{2}}{×300×70×430}$≈9.967.
∵9.967>6.635,
∴有99%的把握认为该地区的老年人是否需要帮助与性别有关.
(Ⅲ)由(Ⅱ)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.

点评 本题主要考查统计学知识,考查独立性检验的思想,考查利用数学知识研究实际问题的能力以及相应的运算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网