题目内容

【题目】给出下列命题:
x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,则x>1;
③“若a>b>0且c<0,则 ”的逆否命题;
④若p且q为假命题,则p,q均为假命题.
其中真命题是( )
A.①②③
B.①②④
C.①③④
D.②③④

【答案】A
【解析】①中不等式可表示为(x-1)2+2>0,恒成立;②中不等式可变为log2x+ ≥2,得x>1;③中由a>b>0,得 ,而c<0,所以原命题是真命题,则它的逆否命题也为真;④由p且q为假只能得出p,q中至少有一个为假,④不正确.
所以答案是:A
【考点精析】利用命题的真假判断与应用对题目进行判断即可得到答案,需要熟知两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网