题目内容

【题目】已知函数.

(1)若上的最大值为,求实数的值;

(2)若对任意,都有恒成立,求实数的取值范围;

(3)在(1)的条件下,设,对任意给定的正实数,曲线 上是否存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由

【答案】(1)(2)(3)对任意给定的正实数,曲线 上总存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上

【解析】

试题分析:(1)由,得

,得

列表如下:

0

0

0

极小值

极大值

即最大值为 4分

(2)由,得

,且等号不能同时取,

恒成立,即

,求导得,

时,,从而

上为增函数, 8分

(3)由条件,

假设曲线上存在两点满足题意,则只能在轴两侧,

不妨设,则,且

是以为坐标原点)为直角顶点的直角三角形,

10分

是否存在等价于方程时是否有解.

①若时,方程,化简得

此方程无解; 11分

②若时,方程为,即

,则

显然,当时,,即上为增函数,

的值域为,即

时,方程总有解.

对任意给定的正实数,曲线 上总存在两点,使得是以为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上. 14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网