搜索
题目内容
已知曲线
的极坐标方程为
,曲线
的极坐标方程为
,曲线
、
相交于
、
两点.(
)
(Ⅰ)求
、
两点的极坐标;
(Ⅱ)曲线
与直线
(
为参数)分别相交于
两点,求线段
的长度.
试题答案
相关练习册答案
(Ⅰ):
或
;(Ⅱ)
.
试题分析:(Ⅰ)由
得:
即可得到
.进而得到点
的极坐标.
(Ⅱ)由曲线
的极坐标方程
化为
,即可得到普通方程
.将直线
代入
,整理得
.进而得到
.
试题解析:(Ⅰ)由
得:
,即
3分
所以
、
两点的极坐标为:
或
5分
(Ⅱ)由曲线
的极坐标方程得其普通方程为
6分
将直线
代入
,整理得
8分
所以
练习册系列答案
新学案同步导与练系列答案
名师大课堂系列答案
351高效课堂导学案系列答案
状元成才路状元导练系列答案
快乐小博士巩固与提高系列答案
探究乐园高效课堂系列答案
勤学早系列答案
思维新观察培优新课堂系列答案
新课堂新观察培优讲练系列答案
5年中考3年模拟系列答案
相关题目
如图,椭圆
与椭圆
中心在原点,焦点均在
轴上,且离心率相同.椭圆
的长轴长为
,且椭圆
的左准线
被椭圆
截得的线段
长为
,已知点
是椭圆
上的一个动点.
⑴求椭圆
与椭圆
的方程;
⑵设点
为椭圆
的左顶点,点
为椭圆
的下顶点,若直线
刚好平分
,求点
的坐标;
⑶若点
在椭圆
上,点
满足
,则直线
与直线
的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
已知抛物线
的焦点为
,过点
的直线
交抛物线
于点
,
.
(Ⅰ)若
(点
在第一象限),求直线
的方程;
(Ⅱ)求证:
为定值(点
为坐标原点).
在平面直角坐标系
中,已知过点
的椭圆
:
的右焦点为
,过焦点
且与
轴不重合的直线与椭圆
交于
,
两点,点
关于坐标原点的对称点为
,直线
,
分别交椭圆
的右准线
于
,
两点.
(1)求椭圆
的标准方程;
(2)若点
的坐标为
,试求直线
的方程;
(3)记
,
两点的纵坐标分别为
,
,试问
是否为定值?若是,请求出该定值;若不是,请说明理由.
已知椭圆
两焦点坐标分别为
,
,一个顶点为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)是否存在斜率为
的直线
,使直线
与椭圆
交于不同的两点
,满足
. 若存在,求出
的取值范围;若不存在,说明理由.
椭圆
与双曲线
有公共的焦点,过椭圆E的右顶点作任意直线l,设直线l交抛物线
于M、N两点,且
.
(1)求椭圆E的方程;
(2)设P是椭圆E上第一象限内的点,点P关于原点O的对称点为A、关于x轴的对称点为Q,线段PQ与x轴相交于点C,点D为CQ的中点,若直线AD与椭圆E的另一个交点为B,试判断直线PA,PB是否相互垂直?并证明你的结论.
已知椭圆C:
的两个焦点是F
1
(
c,0),F
2
(c,0)(c>0)。
(I)若直线
与椭圆C有公共点,求
的取值范围;
(II)设E是(I)中直线与椭圆的一个公共点,求|EF
1
|+|EF
2
|取得最小值时,椭圆的方程;
(III)已知斜率为k(k≠0)的直线l与(II)中椭圆交于不同的两点A,B,点Q满足
且
,其中N为椭圆的下顶点,求直线l在y轴上截距的取值范围.
已知椭圆
的中心在原点,焦点在
轴上,长轴长为
,且点
在椭圆
上.
(1)求椭圆
的方程;
(2)设
是椭圆
长轴上的一个动点,过
作方向向量
的直线
交椭圆
于
、
两点,求证:
为定值.
已知椭圆
的左、右焦点分别是
、
,
是椭圆右准线上的一点,线段
的垂直平分线过点
.又直线
:
按向量
平移后的直线是
,直线
:
按向量
平移后的直线是
(其中
)。
(1) 求椭圆的离心率
的取值范围。
(2)当离心率
最小且
时,求椭圆的方程。
(3)若直线
与
相交于(2)中所求得的椭圆内的一点
,且
与这个椭圆交于
、
两点,
与这个椭圆交于
、
两点。求四边形ABCD面积
的取值范围。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总