题目内容
【题目】若关于x的不等式|3x+2|+|3x﹣1|﹣t≥0的解集为R,记实数t的最大值为a.
(1)求a;
(2)若正实数m,n满足4m+5n=a,求 的最小值.
【答案】
(1)
解:因为|3x+2|+|3x﹣1|﹣t≥0,所以|3x+2|+|3x﹣1|≥t,
又因为|3x+2|+|3x﹣1|≥|(3x+2)+(1﹣3x)|=3,所以t≤3,
从而实数t的最大值a=3
(2)
解:因为
=
,
所以 ,从而y≥3,
当且仅当 ,即 时取等号,
所以 的最小值为3
【解析】(1)问题转化为|3x+2|+|3x﹣1|≥t,求出|3x+2|+|3x﹣1|的最小值,从而求出t的范围即可;(2)根据柯西不等式的性质求出函数的最小值即可.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.
练习册系列答案
相关题目
【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对100名五年级学生进行了问卷调查,得到如下2×2列联表,平均每天喝500ml以上为常喝,体重超过50kg为肥胖.
不常喝 | 常喝 | 合计 | |
肥胖 | x | y | 50 |
不肥胖 | 40 | 10 | 50 |
合计 | A | B | 100 |
现从这100名儿童中随机抽取1人,抽到不常喝碳酸饮料的学生的概率为
(1)求2×2列联表中的数据x,y,A,B的值;
(2)根据列联表中的数据绘制肥胖率的条形统计图,并判断常喝碳酸饮料是否影响肥胖?
(3)是否有99.9%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由. 附:参考公式:K2= ,其中n=a+b+c+d.
临界值表:
P(K2≥k) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |