题目内容
11.在钝角△ABC中,|AB|=$\sqrt{6}$,|BC|=$\sqrt{2}$,且|AC|cosB=|BC|cosA,则|AC|=$\sqrt{2}$.分析 由正弦定理和已知条件可得A=B或A+B=$\frac{π}{2}$,验证可得.
解答 解:∵|AC|cosB=|BC|cosA,
∴由正弦定理可得sinBcosB=sinAcosA,
∴sin2A=sin2B,
∴2A=2B或2A+2B=π,
∴A=B或A+B=$\frac{π}{2}$,
当A+B=$\frac{π}{2}$时,三角形为直角三角形,不合题意,
当A=B时,三角形为等腰三角形,此时|AC|=$\sqrt{2}$,
∵|AB|=$\sqrt{6}$,|BC|=$\sqrt{2}$,|AC|=$\sqrt{2}$,
∴cosC=$\frac{2+2-6}{2×\sqrt{2}×\sqrt{2}}$=-$\frac{1}{2}$<0,C为钝角,三角形为钝角三角形
故答案为:$\sqrt{2}$.
点评 本题考查解三角形,涉及正弦定理和三角形形状的判定,属基础题.
练习册系列答案
相关题目
1.对于命题:p:?x∈(0,$\frac{π}{2}$),sinx+cosx>1;q:?x∈R,sin2x+cos2x>1,则下列判断正确的是( )
A. | p假q真 | B. | p真q假 | C. | p假q假 | D. | p真q真 |
16.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人.则P(B|A)=( )
A. | $\frac{3}{8}$ | B. | $\frac{1}{8}$ | C. | $\frac{3}{16}$ | D. | $\frac{1}{16}$ |
20.下列关于函数f(x)=-2sin2x-cos4x(x∈R)的说法正确的是( )
A. | f(x)的最小正周期为2π | B. | f(x)的最大值为-1 | ||
C. | f(x)是偶函数 | D. | f(x)在[$\frac{π}{12}$,$\frac{π}{4}$]上单调增 |