题目内容

【题目】记等差数列的前项和为.

(1)求证:数列是等差数列;

(2)若 ,对任意,均有是公差为的等差数列,求使为整数的正整数的取值集合;

(3)记,求证: .

【答案】(1)见解析(2)(3)见解析

【解析】试题分析】(1)先设等差数列的公差为,将,进而得到当时, ,依据定义可知数列是等差数列;2)依据题设条件“任意的都是公差为,的等差数列”求出,然后建立等式,分析探求出满足条件,当时不满足,进而求出正整数的取值集合为;(3)先依据题设将问题转化为证明不等式。证明时运用了做差比较的方法进行推证,进而证得 ,使得不等式或获证。

解:(1)设等差数列的公差为,则,从而,所以当时, ,即数列是等差数列.

(2)因为的任意的都是公差为,的等差数列,所以是公差为,的等差数列,又,所以,所以,显然, 满足条件,当时,因为,所以,所以不是整数,综上所述,正整数的取值集合为.

(3)设等差数列的公差为,则,所以,即数列是公比大于,首项大于的等比数列,记公比为.以下证明: ,其中为正整数,且,因为,所以,所以,当时, ,当时,因为为减函数, ,所以,所以,综上, ,其中

,即.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网