题目内容
17.已知a>1,函数f(x)=loga(x+1),g(x)=2loga(2x+t),当x∈(-1,1),t∈[4,6]时,存在g(x)≤f(x)+4成立,则a的最小值为2.分析 构造函数F(x)=g(x)-f(x),把f(x)和g(x)代入到F(x),然后利用对数的运算性质化简,转化为关于a的不等式,再运用基本不等式即可.
解答 解:令F(x)=g(x)-f(x),
∵f(x)=loga(x+1),g(x)=2loga(2x+t)(a>1),
∴x∈(-1,1),t∈[4,6)时,F(x)=g(x)-f(x)有最小值是4,
由F(x)=g(x)-f(x)=loga $\frac{(2x+t)^{2}}{x+1}$,x∈(-1,1),t∈[4,6),a>1,
∴令h(x)=$\frac{(2x+t)^{2}}{x+1}$=4(x+1)+4(t-2)+$\frac{{(t-2)}^{2}}{x+1}$,
∵-1<x<1,4≤t<6,
∴h(x)=4(x+1)+$\frac{{(t-2)}^{2}}{x+1}$+4(t-2)在(-1,0]上单调递减,在[0,1)上单调递增,
∴h(x)min=h(0)=4+(t-2)2+4(t-2)=[(t-2)+2]2=t2,
∴F(x)min=logat2=4,
∴a4=t2;
∵4≤t<6,
∴a4=t2≥16,
∴a≥2.
故a的最小值为2,
故答案为:2.
点评 此题考查对数的运算性质,要求学生灵活运用对数运算的性质,熟练运用化归思想解决恒成立问题,易错点在于h(x)=4(x+1)+$\frac{{(t-2)}^{2}}{x+1}$+4(t-2),该先把最小值解出,再令它等于4,转化为在t∈[4,6)上有解,属于难题.
练习册系列答案
相关题目
6.已知{αn}是等差数列,且a5+a17=4,那么它的前21项之和等于 ( )
A. | 42 | B. | 40$\frac{1}{2}$ | C. | 40 | D. | 21 |