题目内容

精英家教网如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.
(1)求证:AB⊥PD;
(2)若点E是线段PB的中点,求证:AE∥平面PCD.
分析:(1)由已知中四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠BAD=90°,我们易得PA⊥AB,AB⊥AD,由线面垂直的判定定理易得AB⊥平面PAD,根据线面垂直的定义,即可得到AB⊥PD;
(2)若点E是线段PB的中点,取PC的中点F,连接AE,EF,DF,由三角形中位线定理,我们判断四边形EFDA是平行四边形,结合空间中直线与平面平行的判定定理,即可得到AE∥平面PCD.
解答:精英家教网解:
(1)证明:∵PA⊥平面ABCD,AB?平面ABCD,
∴PA⊥AB.
∵AB⊥AD,PA∩AD=A,
∴AB⊥平面PAD,
∵PD?平面PAD,
∴AB⊥PD.(6分)
(2)因为点E为线段PB的中点,
取PC的中点F,连接AE,EF,DF,
则EF是△PBC中位线.
∴EF∥BC,EF=
1
2
BC

∵AD∥BC,AD=
1
2
BC

∴AD∥EF,AD=EF.
∴四边形EFDA是平行四边形,
∴AE∥DF.
∵AE?平面PCD,DF?平面PCD,
∴AE∥平面PCD.(12分)
点评:本题考查的知识点是直线与平面平行的判定及直线与平面垂直的性质,其中熟练掌握空间直线与平面平行的判定定理,及直线与平面垂直的判定定理和性质定理是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网