题目内容

【题目】x,y 满足约束条件 ,若 z=y﹣ax 取得最大值的最优解不唯一,则实数 a 的值为(
A. 或﹣1
B.2 或
C.2 或1
D.2 或﹣1

【答案】D
【解析】解:作出不等式组对应的平面区域如图:(阴影部分ABC).

由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.

若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,

若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,

则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,

若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,

则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,

综上a=﹣1或a=2,

故选:D.

作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网