题目内容
【题目】已知抛物线:和直线:,是的焦点,是上一点,过作抛物线的一条切线与轴交于,则外接圆面积的最小值为( )
A. B. C. D.
【答案】A
【解析】
设出过点P的切线方程,将切线方程与抛物线方程联立,即可得到切线斜率,进而得到点Q坐标,利用斜率乘积为-1可判断出为直角三角形,外接圆的圆心即为斜边的中点,即可求出圆的半径,从而得到圆的面积,即可得到最值.
将直线l与抛物线联立,得,即直线l与抛物线相切且切点为(1,2),又是上一点,
当点P为切点(1,2)时,Q(0,1),F(1,0),此时为直角三角形,且外接圆的半径为1,故圆的面积为;
当点P不为切点时,设点,切线斜率为k,则切线方程为,即,将切线方程与抛物线方程联立得,其中,则,此时切线方程化简得,此时点Q,可得,即为直角三角形,PF中点M即为外接圆的圆心,则,面积为,当时面积取到最小值为,
综上,面积最小值为,
故选:A.
练习册系列答案
相关题目
【题目】中国共产党第十九次全国代表大会于2017年10月18日至10月24日在北京召开,会议提出“决胜全面建成小康社会”.某市积极响应开展“脱贫攻坚”,为2020年“全面建成小康社会”贡献力量.为了解该市农村“脱贫攻坚”情况,从某县调查得到农村居民2013年至2017年家庭人均纯收入(单位:百元)的数据如表:
年 份 | 2013 | 2014 | 2015 | 2016 | 2017 |
年人均纯收入百元 | 47 | 55 | 61 | 65 | 72 |
注:小康的标准是农村居民家庭年人均纯收入达到8000元.
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,预测2020年该县农村居民家庭年人均纯收入指标能否达到“全面建成小康社会”的标准?
附:回归直线 斜率和截距的最小二乘估计公式分别为: